Redaktion

Chefredakteur
Dr. F. Wallrafen
Mineralog. Institut
5300-Bonn 1
Poppelesdorfer Schloß
Tel. 0228/73-2961
-2761
Fax -2770

Übersichtsartikel
A. Cröll
0761/2034282

Kristallzüchtung in Deutschland
T. Boeck
Inst. Kristallzüchtung
O-1199 B.-Adlershof
Tel. 0372-6704/2889

Tagungsberichte
W. Aßmus
Tel. 069/798-3144
Fax -8520

Aktivitäten von und für junge Kristallwissenschaftler
C. Sussieck-Fornefeld
06221/56-2806

Stellenangebote und -gesuche
H. Walcher
0761/5159-358
Fax -400

Mitteilungen der DGKK
J. Schmitz
0761/5159-270
Fax -400

Mitteilungen ausländischer Schwestergesellschaften
Tagungskalender

Bücherecke
R. Diehl
0761/5159-416
Fax -400

Schmunzelecke
R. Diehl

Anzeigenwerbung
G. Müller-Vogt
0721/608-3470

Vorstand der DGKK

Vorsitzender
Prof. Dr. H. Wenzl
Institut für Festkörperforschung der KFA
Postfach 1913
5170 Jülich 1
Tel. 02461/61-664, Fax 02461/61-3916

Stellvertretender Vorsitzender
Dr. M. Jurisch
IFW Dresden
Helmholtzstraße 20
8027 Dresden
Tel. 0037/2322-216, Fax 0037/2322-599

Schriftführer
Dr. H. Walcher
Fraunhofer-Institut für Angewandte Festkörperphysik
Tullastr. 72
7800 Freiburg
Tel. 0761/5159-358, Fax 0761/5159-400

Schatzmüse
Dr. Gerhard Müller-Vogt
Kristall- und Materiallab der Fakultät für Physik
Kaiserstr. 12
7500 Karlsruhe
Tel. 0721/608-3470, Fax 0721/697123

Beisitzer
Dr. W. Aßmus
Physikalisches Institut der Universität Frankfurt
Postfach 11 9132
6000 Frankfurt/M. 11
Tel. 069/798-3144, Fax 069/798-8520

BANKVERBINDUNGEN

Sparkasse Karlsruhe
Kto.-Nr. 104 306 19
BLZ 660 501 01

PSA-Karlsruhe
Kto.-Nr. 2424 17-752
BLZ 660 100 75
Editorial

Liebe Leser,
die Jahrestagung der DGKK in Dresden ist erfolgreich verlaufen und die meisten sind schon wieder im Alltagsstreß. Das gilt allerdings nicht für die Redaktion des MB, die gerade jetzt gefordert ist und die Ihnen – besonders denjenigen, die nicht in Dresden an der Tagung teilnehmen konnten – einen Eindruck darüber vermitteln möchte. An dieser Stelle gilt mein Dank den ‘ad hoc’ Redakteuren, ohne die es sehr schwierig wäre, Sie mit entsprechenden Informationen zu versorgen.

Mit etwas Sorge müssen wir auf den Bestand der einzigen deutschen Zeitschrift für Kristallzüchtung blicken. Nähe- res dazu im Heft.

Weiterhin möchte ich auf meine, seit über einem Jahr geänderte FAX-Nr. (s. S. 2) hinweisen. Von einem Teil der Kollegen wird immer noch die alte Nr. benutzt, was mindestens 1–2 Tage Verzögerung mit sich bringt.

Ihr
F. Wallrafen

Notizen des Vorsitzenden

Die Erweiterung unseres Bewegungsräumes hat unserer Gesellschaft außergewöhnlichen Auftrieb gegeben, was sich auch in den Mitgliederzahlen niederschlägt. Dennoch sind wir ein überschaubarer Verein geblieben, bei dem die wissenschaftlichen Treffen Spaß machen, anregen und beleben und nicht zu einem Zustand der totalen Erschöpfung führen, wie es heute häufig bei den üblichen Mammattagungen geschieht.

H. Wenzl

Dipl.-Kristallograph

Diplom 5/89 an der Albert-Ludwigs-Universität Freiburg i. Br.

Erfahrungsbereiche: Div. Züchtungsmethoden (Gasphase: TOM, PVD; Schmelze: Bridgman, Czochralski; Lösung und Gel.)

Besonders: Verbindungshalbleiter für Gamma- und Röntgenstrahlungsektoren.

Stöchiometrische und thermische Untersuchungen, Röntgenmethoden und elektrische Charakterisierung; sucht interessante Tätigkeit mit Entwicklungsmöglichkeiten in Industrie oder Forschung.

Ch. Kemen, Rupprechtstr. 5, 7750 Konstanz, Tel. 07531/31937

Dipl.-Kristallographin

S. Keßler, MPI f. Metallforschung, Pulvermetallurgisches Laboratorium, Heisenbergstr. 5, 7000 Stuttgart 80, Tel. 0711/6861226
— Hochtemperaturöfen
— Anlagen zur thermischen Materialbehandlung und Kristallzüchtung

Lieferprogramm:
— Standard-Rohröfen bis 1100°C
— Standard-Rohröfen bis 1300°C
— Mehrzonen-Rohröfen bis 1100°C bzw. 1300°C
— Rohröfen ein- und mehrzonal bis 1700°C
— Zehnzonen-Rohröfen bis 1300°C für spezielle Temperaturprofile
 (z. B. für Epitaxie und Kristallzüchtung)
— SiC-Rohr- und Kammeröfen bis 1500°C
— Kammer- und Tiegelöfen (auch mit pneumatischem Aushub) bis 1700°C
— Pyrometer Kalibriöfen bis 2300°C
— Schutzgas- und Vakuumröfen bis 3000°C
— Lichtbogenöfen und Schmelzanlagen
— Bewegungseinrichtungen für Öfen und Proben
— Zonenschmelzanlagen
— Kristallziehanlagen (Bridgman und Czochralski)
— Wärmever (heat pipes)
— Sonderöfen- und Anlagenbau
— Sämtliche Temperatur- und Motorregaleinheiten
— X-Y-Schreiber (Ein- und Mehrkanal, auch mit Nullpunktunterdrückung)
— Diamantdrahtsägen zur Kristallpräparation
— Laboröfen unter oxidierender Atmosphäre bis 2000°C
— Wassergekühlte Edelstahlfansche
— TPM Temperaturprofilbeinrichtung
— Mikrowellen-Plasmaanlagen

Zehnzonenrohrofen bis 1300°C bzw. bis 1500°C

GERO Hochtemperaturöfen GmbH
Monbachstraße 7
D-7531 Neuhausen
Tel. 0 72 34 / 61 36
Telefax 0 72 34 / 53 79
Telex 7 83 309 ger o d
2. Mitteilungen der DGKK

Mitgliederversammlung

Ort: Vortragssaal
Haus der Bildung und Kultur
Maternistr. 17, O-8010 Dresden

Zeit: Donnerstag, den 12. März 1992, 17.00 – 19.00 Uhr

Protokoll: H. Walcher

Teilnehmer:

Mitglieder:

Anzahl der Mitglieder: 55
Gäste: Krabbes, G.; Neels, H.; Lentz, A.; Baldus, A.

1. Begrüßung und Feststellung der Beschlussfähigkeit

Herr Wenzl begrüßt die Teilnehmer der Versammlung und stellt fest, daß mit 55 anwesenden Mitgliedern die Beschlussfähigkeit der Jahreshauptversammlung gegeben ist.

2. Bericht des Vorsitzenden

1992 Dresden.
1993 Berlin
1994 Freiburg, Stuttgart, Bonn?

Orte, an denen Kristallzüchtung betrieben wird und wo in den letzten Jahren erhebliche Veränderungen stattgefunden haben, sind unter anderem:
AKZO Ibbenbüren
Berlin
Freiberg
Leybold Hanau
Philips Hamburg
Preussag Langelshain
Siemens München
Wacker Burghausen

Was erwarten die Kristallzüchter von der Zukunft?
In den neuen Bundesländern gibt es viele Aktivitäten, die erhalten bleiben werden. Einige Institute wurden neu gegründet und konnten einen Teil der Mitarbeiter aus den AdW-Instituten aufnehmen. Es ist zu hoffen, daß dort möglichst viele der Aktivitäten der früheren Institute weitergeführt werden können.

Die Industrieausstellung fand auch in diesem Jahr großes Interesse. Insbesondere ist es sehr erfreulich, daß eine erhebliche Zahl an Ausstellern aus dem osteuropäischen Raum kommen.

Ebenso erfreulich ist es, daß es gelungen ist, die folgenden drei ausländischen Gäste zu Vorträgen auf dieser Tagung zu gewinnen:

Dr. V.V. Voronkov
Griedmet
B. Tolmashevski 5
109017 Moscow, GUS

Dr. G. Bukin
Academy of Sciences
Design Technological Inst. of Monocrystals
Russkaya 43
630058 Novosibirsk GUS
Tel.: 383 3 357 239

Dr. B. Perner
Monokrystal
Palackeho 175
511 19 Turnov CSFR

Es wäre wünschenswert, wenn die Kontakte nach Osten weiter intensiviert und ausgedehnt würden.

Herr Jurisch bittet darum, aus persönlichen Gründen für die nächste Zeit sein Amt als stellvertretender Vorsitzender ruhen lassen zu dürfen.

„Kristall und Technik“ war die Zeitschrift der „Vereinigung für Kristallographie“ (VfK). Nachdem sich die VfK und die AGKr zur „Deutsche Gesellschaft für Kristallographie in Gründung“ (DGK i.G.) zusammengefunden haben, muß sich die Zeitschrift, die sich inzwischen „Crystal Research and Technology“ nennt, selbst um ihren Vertrieb kümmern.

Herr Neels gibt hierzu einige Erläuterungen:
Die Zahl der Abonnenten ist in den vergangenen Jahren stark zurückgegangen. Wenn die Zeitschrift weiterbestehen soll, so ist das nur möglich, wenn weiterhin in der Zeitschrift veröffentlicht wird und sich die Zahl der Abonnenten wieder erhöht. Um das zu erreichen, muß die Qualität der Beiträge möglichst hoch sein.

Zum Abschluß seines Berichts ermutigt Herr Wenzl die Anwesenden, die Aussichten und Möglichkeiten, die sich für die Kristallzüchtung ergeben, nicht zu düster einzuschätzen, sondern vielleicht mit Realistischem Pessimismus, besser aber mit Skeptischem Optimismus, in die Zukunft zu sehen.
3. Bericht des Schriftführers
Im vergangenen Jahr wurde vom North Holland Verlag in Amsterdam den Mitgliedern der DGKK Master Index des Journal of Crystal Growth für die Bände 101 – 110 zur Verfü- gung gestellt. Der Versand des Master Index, der zusammen mit dem Mitteilungsblatt 54 erfolgte, war eine recht teure Angelegenheit. Daher hat der Vorstand der DGKK beschlos- sen, daß die Hefte bei der nächsten Jahrestagung ausgelegt werden. Mitglieder, die eine Zusendung des Index wünschen, werden gebeten, sich an Herrn Walcher zu wenden.

4. Bericht des Schatzmeisters und der Rechnungsprüfer

5. Entlastung des Vorstandes
Herr G. Müller bedankt sich beim Vorstand für die geleistete Arbeit und bittet die anwesenden Mitglieder, den Schatzmeister und den Vorstand zu entlasten.
Abstimmung: Ja-Stimmen: 55
 Nein-Stimmen: 0
 Enthaltungen: 0

6. Diskussionen und Beschlüsse über Tagungen und Symposien
DGKK-Jahrestagung 1993

Kristallpräparation
- Orientieren, Sägen
- Polieren
- II-VI Substrate
- IV-VI Substrate
- Hoch-Tc Substrate
- Keimkristalle
- Sputertargets
- Planoptik (Prismen, Fenster, Filter, ...)

Einkristalle
- THM Bridgman
- II-VI
- IV-VI
- Metalle

Reinststoffe
- Zn, Cd, Hg
- Sn, Pb
- Se, Te
- Mn
- und deren binäre und ternäre Verbindungen

CRYSTAL
Herstellung und Vertrieb von Reinststoffen, Einkristallen und Planoptik

CRYSTAL GmbH
Ostendstraße 1-14 O-1160 Berlin
Tel. (00372) 63 83 29 63
Fax (00372) 63 83 36 96
Städten nicht so weit entfernt, was einen Besuch der Stadt jederzeit erlaubt. Selbstverständlich ist auch ein Tagungsraum in einem der Institute und die Unterbringung in Hotels denkbar. Die Kosten der Tagung konnten noch nicht ganz abgesagt werden; sie werden wahrscheinlich aber doch etwas höher liegen, da Berlin ein recht teures Pflaster ist. Ob ein Symposium zu einem speziellen Thema stattfinden soll oder nicht, bleibt den Organisatoren überlassen.

Herr Rudolph regt an, daß Entscheidungen über ein Tagungslokal recht bald getroffen werden sollten, da bei mündlichen Zusagen einer Tagungsstätte ohne Vertrag auch Absagen befürchtet werden müssen.

In der Diskussion wird mehrfach betont, daß eine Kombination von Tagungsort und Unterbringung der Vorzüge zu geben wäre.

DGKK-Jahrestagung 1994

In Gießen wurde angeregt, daß eine künftige Jahrestagung in einem Landeszentrum im Osten stattfinden sollte. Die derzeitigen politischen Verhältnisse sind jedoch so unsicher, daß eine langfristige Planung kaum möglich ist. Darüber hinaus konnten bis jetzt noch keine so engen Kontakte geknüpft werden, daß mit einer solchen Bitte an die dortigen Kollegen herangezogen werden kann.

Herr Wallraff berichtet, daß die Tagung in Parma zusammen mit den italienischen Kristallzüchtern mit der Zusage verbunden war, später eine gemeinsame Tagung in Freiburg abzuhalten. In Freiburg wird im Sommer 1994 schon eine große internationale Tagung stattfinden, so daß es ungünstig erscheint, die DGKK-Jahrestagung auch dort stattfinden zu lassen.

Herr Tolksdorf bemerkt, daß es unbedingt notwendig ist, schon jetzt einen Tagungsort auszuwählen, damit später kein Engpaß entsteht.

Als möglicher Tagungsort wird daraufhin Stuttgart (Herr Paus) oder Bonn (Herr Wallraff) benannt.

7. Diskussion und Beschuß über die Jahrestagung 1993 in Berlin

Eine weitergehende Diskussion über den Tagungsort Berlin 1993 wird nicht gewünscht.

8. Diskussion über DGKK-Arbeitskreise

Herr G. Müller berichtet über den Arbeitskreis: „Herstellung und Charakterisierung von massiven GaAs und InP-Kristallen“.

Der Arbeitskreis ist bestrebt, den Zusammenhang zwischen den Kristallzüchtungsbedingungen und den Kristalleigen-

schäften von GaAs und InP (vorwiegend Vertikales Bridgman) zu erforschen.

Die Themenschwerpunkte sind dabei:

- LEC-Züchtung
- Bridgman-Züchtung (vertikal und horizontal, gradient-freeze)
- Hot Wall Czochralski (Grenzflächenmauer-Verfahren)
- Semisolierendes GaAs und InP
- Stöchiometrie von GaAs und InP
- intrinsische und extrinsische Punktdefekte und deren spektroskopischer Nachweis
- Versetzungsbildverarbeitung und Versetzungsnetzwerke
- Auswirkungen von Kristall- und Scheibentemperatur auf elektronische Eigenschaften und deren Homogenität („bulk and waferannealing“)
- Charakterisierung von Inhomogenitäten der GaAs- und InP-Scheiben mit Rasterverfahren („wafer mapping“)

Die beiden nächsten Termine sind 8. + 9. April 1992 in Erlangen

Anmeldungen an A. Winnacker oder G. Müller
Inst. für Werkstoffwissenschaften der Universität Martensstr. 7 W-8520 Erlangen

21. + 22. Oktober 1992 in Freiberg

„Oxide“

Herr Tolksdorf berichtet, daß die Hauptaktivitäten in diesem Arbeitskreis von den Herstellern von Hochtemperatur-Supraleitern ausgehen.

Er stellt die Frage, wie dieser Arbeitskreis weiter bestehen soll, um den unterschiedlichen Anforderungen gerecht zu werden. Kann das Thema in dieser allgemeinen Form beibehalten werden oder sollten die Themen mehr eingegrenzt sein? Wäre jemand bereit, mit ihm zusammen ein Treffen zu organisieren, bei dem die anstehenden Fragen diskutiert werden können?

Herr Paus, der sich mit seinem Arbeitsgebiet „oxidische und fluoridische Laserkristalle“ bisher in keinen Arbeitskreis vertreten findet, stellt seine Vorschläge zu diesem Thema vor: Der Arbeitskreis Oxide könnte neben den HTC-Materialien auch diese Stoffgruppe enthalten. Falls diese Themenbreite als zu aufgelaufert empfunden wird, ist zu überlegen, ob nicht ein weiterer Arbeitskreis ins Leben gerufen werden sollte, der sich mit Züchtung und Präparation von

- aktiven und passiven, oxidischen und fluoridischen Laserkristallen,
- elektrooptischen und akustooptischen Modulatorkristallen,
- allgemeinen Kristallen für optische Bauelemente,
- kristallinen Fasern, beschäftigt.

Herr Altmann schlägt vor, daß im Herbst in Frankfurt ein Treffen aller Mitglieder organisiert wird, die an den jetzt angesprochenen Themenkreisen interessiert sind. Bei diesem Treffen soll dann auch diskutiert werden, wie die verschiedenen Arbeitskreise in einen Arbeitskreis integriert werden können, oder ob verschiedene Arbeitskreise ins Leben gerufen werden sollten.
Röntgen-Topographie
Herr Wenzl berichtet über den Arbeitskreis Röntgen-Topographie, der ein sehr aktiver Kreis mit einer recht großen Zahl an Teilnehmern ist. Viele der Teilnehmer kommen aus dem Bereich der Kristallographie, wodurch ein Kontakt zu diesem Arbeitskreis aufrecht erhalten wird.
Anmeldungen bitte an Prof. H. Klapper
Mineralogisches Institut der Universität
Poppelsdorfer Schloß W-5300 Bonn

(H. Walcher)

für die Nominierung eines Kandidaten zur Verfügung stand, jemanden zu finden, der bereit war, ein solches Amt zu übernehmen.
Anmerkungen von Herrn Wenzl:
Es ist sehr wichtig, daß Projekte, die von der DFG gefördert werden, sächskundig und kritisch begutachtet werden. Viele Mitglieder der DGKK haben schon im Rahmen ihrer Tätigkeit Gutachten für die DFG erstellt, ohne daß sie im offiziellen Katalog der DFG-Gutachter genannt sind. Die DGKK war also auf diesem indirekten Weg als Fachgutachter bei der DFG vertreten.

Die Einflußmöglichkeiten eines einzelnen von der DGKK benannten Gutachters auf die Politik der DFG oder die Verteilung von Geldmitteln sind zudem nicht zu hoch einzuschätzen, da die Entscheidungen der DFG nicht von einem einzelnen Gutachter abhängig sind. Leider ist es nur allzuoft der Fall, daß die Wissenschaftler, die für ein solches Amt in Frage kommen, sich gerade nicht offiziell zur Verfügung stellen, da sie selbst schon in irgend einer Weise als Gutachter tätig sind. Der Vorstand der DGKK bittet alle Mitglieder, die für ein solches Amt in Frage kommen, sich auch dafür bereit zu erklären und sich als Kandidaten für die nächste Fachgutachterwahl zur Verfügung zu stellen.

10. Verschiedenes
Herr Rudolph berichtet, daß er Anträge bei der DFG für Reisen zur ICCG 10 und zur ISSCG 8 für Studenten gestellt hat. Er fragt, ob die DGKK für die Reisefinanzierung einspringen kann, falls die DFG die Anträge ablehnt. Herr Droste bemerkt, daß die Veranstalter der ICCG 10 selbst Fördermöglichkeiten anbieten und es sinnvoll wäre, sich direkt an diese zu wenden.

Unsere Geräte-Evolution zu Ihrem Vorteil!
Wir liefern bereits jetzt die Technologie von morgen!

Ein Höchstmaß an Genauigkeit:

THERMOMASTER TM1000

- 10 Meßbereiche von –273 °C bis +2400 °C
- Präzisions-Temperaturmultimeter neuer Klasse
- 4 Meßwerte gleichzeitig
- Auflösung 0,1 °C oder 0,01 °C
- RS232/RS422-Schnittstelle serienmäßig
- PC-Auswertssoftware lieferbar

NOVOCONTROL Gmbh
Postfach 2110 5431 HUNDSANGEN
Tel.: 0 64 35 / 70 06/07 Telefax: 0 64 35 / 60 24
Es wird bemerkt, daß zu solchen internationalen Tagungen nun auch oft ältere Wissenschaftler fahren, die schon ausreichend Gelegenheit hatten, sich zu profilieren. Die ISSCG ist nicht in erster Linie eine Sommerschule, um Anfängern in der Kristallzüchtung die Sprünge zu helfen, sondern um aktuelle Probleme aus Theorie und Praxis zu diskutieren. Außerdem stammen bei dieser Veranstaltung die meisten „Studenten“ aus dem Lande, in dem die Sommerschule abgehalten wird.

Der Vorstand spricht sich nicht für eine generelle Finanzierung von Reisen zu der IOCG 10 oder ISSCG 8 aus, es können höchstens einzelne Reisezuschüsse gewährt werden. Eine besondere Schwierigkeit besteht darin, daß ein gerechter Verteilungsschlüssel gefunden werden muß. Die Gesellschaft strebt eine Verbesserung der Nachwuchsfordeurung an. Es ist noch nicht klar, was man in dieser Richtung tun sollte.

Tabelle 1

<table>
<thead>
<tr>
<th>Mitgliederentwicklung (Stand jeweils 1. März)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datum</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>1971</td>
</tr>
<tr>
<td>1972</td>
</tr>
<tr>
<td>1973</td>
</tr>
<tr>
<td>1974</td>
</tr>
<tr>
<td>1975</td>
</tr>
<tr>
<td>1976</td>
</tr>
<tr>
<td>1977</td>
</tr>
<tr>
<td>1978</td>
</tr>
<tr>
<td>1979</td>
</tr>
<tr>
<td>1980</td>
</tr>
<tr>
<td>1981</td>
</tr>
<tr>
<td>1982</td>
</tr>
<tr>
<td>1983</td>
</tr>
<tr>
<td>1984</td>
</tr>
<tr>
<td>1985</td>
</tr>
<tr>
<td>1986</td>
</tr>
<tr>
<td>1987</td>
</tr>
<tr>
<td>1988</td>
</tr>
<tr>
<td>1989</td>
</tr>
<tr>
<td>1990</td>
</tr>
<tr>
<td>1991</td>
</tr>
<tr>
<td>1992</td>
</tr>
</tbody>
</table>

Tabelle 2

<table>
<thead>
<tr>
<th>Kontostände zum letzten Kassenbericht:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postscheckkonto</td>
</tr>
<tr>
<td>Sparkasse</td>
</tr>
<tr>
<td>Festgeldanlage</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kontostände zum diesjährigen Kassenbericht:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postscheckkonto</td>
</tr>
<tr>
<td>Sparkasse</td>
</tr>
<tr>
<td>Festgeldanlage</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Kontobewegungen:

<table>
<thead>
<tr>
<th>Einnehmen: Postscheckkonto</th>
<th>590,00 DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sparkasse</td>
<td>12.440,69 DM</td>
</tr>
<tr>
<td>Ausgaben: Postscheckkonto</td>
<td>590,00 DM</td>
</tr>
<tr>
<td>Sparkasse</td>
<td>12.440,69 DM</td>
</tr>
<tr>
<td></td>
<td>-3.253,33 DM</td>
</tr>
</tbody>
</table>

3. Arbeitskreise der DGKK

Einladung

t zu einem Treffen der Interessenten an Arbeitskreisen über Oxid- und Laserkristalle

Seit Anfang 1990 besteht der Arbeitskreis Oxidkristalle der DGKK. In ihm haben die Hochtemperatur-Supraleiter bisher dominiert. Herr Prof. Paus aus Stuttgart schlägt nun vor, einen Arbeitskreis zu gründen, der sich mit folgenden Themen befaßt:

- aktiven und passiven, oxidischen und fluoridischen Laserkristallen
- elektrooptischen und akustooptischen Modulatorkristallen
- Kristallen für optische Bauelemente
- kristalline Farben.

Dieser neue Arbeitskreis (evtl. Laserkristalle?) hat einen starken Überlapp mit dem Kreis Oxidkristalle, schließt aber speziell die Supraleiter aus.

Auf der Jahrestagung in Dresden wurde vereinbart, daß sich die an diesen Arbeitskreisen Interessierten im September in Frankfurt treffen wollen, um das weitere Vorgehen zu beraten.

Das Treffen findet statt am Donnerstag, den 17.09.1992 um 10.00 Uhr am Physikalisches Institut der Universität, Robert-Mayer-Str. 2-4 in D-6000 Frankfurt a.M. 11, Telefon (069) 798-3144, Telefax (069) 798-8520.

Alle Interessenten sind herzlich eingeladen.

Als Tagesordnung schlage ich vor:

1. Diskussion der (des) Arbeitskreise(s)
2. Vorträge der Interessenten
3. evtl. Laborbesichtigung

Ich denke, daß wir bis 16.00 (17.00) Uhr die Punkte der Tagesordnung besprechen können.

Für eine kurze Anmeldung zu dem Treffen (evtl. mit 10-Minuten-Vortrag) wäre ich dankbar.

(W. Aßmus)

4. Kristallzüchtung in Deutschland

Kristallzüchtung am Hahn-Meitner-Institut Berlin

S. Fiechter

Im Vordergrund stehen Arbeiten zur Entwicklung von Verbindungshalbleitern mit Pyrit-(FeS2, RuS2), Chalkopyrit-(CuInS2, ZnSIP2), Molybdänit-(MoO3, WSe2) und „Chevrelphasen“-Struktur (Ru,Mo,Se2, ReS2,Cl2). Die genannten Materialien sind vor besonderem Interesse, da sie Übergangsmetalle enthalten, die eine hohe Absorption des eingestrahlten Lichtes im sichtbaren Bereich bewirken.
Unser Lieferprogramm:

- Czochralski – Einkristallziehanlagen
- Zonenfloating – Einkristallziehanlagen
- Laborkristallziehanlagen nach Ihrer Spezifikation
 - Czochralski
 - Floatzone

- Vakuum- und Schutzgasrezipienten nach Ihrer Spezifikation
- Hochfrequenzgeneratoren, Schwingkreise
 Hochstromeinheiten, Steuerungen
- Tiegelrotations- und Hubeinrichtungen,
 Ziehstangen, Dichtungen
- Kristallzüchtungszubehör (nach Wunsch)
 - Keimhalter, Stabhalter
 - Induktoren
 - Schutzabdeckungen
 - Kristallstützungen
 - Schaugläser
 - Vakuumdurchführungen
Besonderheiten, die bei der Herstellung dieser Materialien auftreten, werden im folgenden an drei Beispielen erläutert.

1. Chemischer Transport und Defektchemie von Pyrit

Pyrit gehört zur Klasse der Verbindungshalbleiter mit einer indirekten Bandlücke von $E_g = 0.95 \pm 0.05$ eV. Es besitzt einen außergewöhnlich hohen Absorptionskoeffizienten von $\alpha = 5 \cdot 10^4 \text{ cm}^{-1}$, der aus dem d-Bandcharakter der Bandlücke resultiert. Deshalb ist das Sulfid als lichtabsorbierende Schicht in Dünnichtsolarzellen von Interesse.

Aus dem Phasendiagramm Eisen-Schwefel (Abb. 1) wird ersichtlich, daß Pyrit auf Grund eines hohen thermischen Zersetzungspunktes aus der Schmelze nicht züchten läßt. Kristalle des Sulfides mit einer Größe von bis zu 8 mm Kantenlänge sind jedoch durch Züchtung aus der Gasphase mit Chlor oder Brom als Transportmittel (Abb. 2) oder durch Hochtemperatur-losungszüchtung mit Tellur oder Bleijodid als Lösungsmittel erzielbar. Der Transport im Temperaturbereich von 550 bis 700°C kann vereinfacht durch folgende Gleichung beschrieben werden:

$$\text{FeS}_2(f) + 2 \text{FeCl}_3(g) = 3 \text{FeCl}_2(g) + \text{S}_2(g).$$

Abb. 1: Ausschnitt aus dem Phasendiagramm Fe-S.

Abb. 2: Pyritkristalle, gezüchtet durch chemischen Transport mit Brom bei $T = 580^\circ\text{C}$ (Transportgeschwindigkeit 10 m/min).

Elektronen ist bei $300 \, \text{K} \leq 400 \, \text{cm}^2/\text{Vs}$, die Löcherbeweglichkeit liegt bei $< 5 \, \text{cm}^2/\text{Vs}$.

Pyrit wird in der Literatur stets mit der Zusammensetzung FeS$_2$ und einer Dichte von $p = 5.0 - 5.2 \, \text{g/cm}^3$ angegeben. Versuche zur Herstellung von synthetischem Pyrit stehen dazu in deutlichem Widerspruch. Bei der Synthese von Pyritpulver aus den Elementen verbleibt stets ein Schwefelrest von einigen Gewichtsprozenten. Magnetische Messungen, röntgenographische Untersuchungen und Dialemmungen weisen konstant auf die Existenz einer Eisensulfidphase FeS$_2$ mit einem Wert $x \leq 0.15$ hin. Die hohe Abweichung von der Idealzusammensetzung kann auf einfache Weise durch eine Substitution von (S$_2$)$_x$-Einheiten durch S2-Ionen erklärt werden. Trotz der postulierten hohen Konzentration an singulären Schwefelionen (ca. $10^{20} \, \text{cm}^3$) werden bei Untersuchungen mit dem Transmissionselektrodenmikroskop keine Verzerrungen des Gitters vorgefunden. Für eine Deutung dieses Sachverhaltes müßten angenommen werden, daß der Unterschied im Platzbedarf für eine (S$_2$)$_x$-Hantel (mit einer Länge von ca. 4 \, \AA) und für ein einzelnes S2-Ion (d = 3.6 \, \AA) klein ist und zu keiner Verzerrung des Gitters führt.

Photoelektrochemische Experimente lassen den Schluß zu, daß die Existenz der hohen singulären Schwefelstehlenkonzentration mit der Größe der beobachteten Photospannung korreliert ist. Entgegen der allgemeinen Regel, daß diese Spannung in der Größenordnung der halben Bandbreite des Halbleiters liegt (bei Pyrit also bei 0.45 \, V), erreichen alle bisher untersuchten synthetischen Pyritkristalle maximal Werte von 0.2 \, V. Mit Hilfe der Ligandenfeldtheorie läßt sich zeigen, daß das vorhandene Schwefeldefizit ein Störband in der Energie- lücke des Eisensulfides erzeugt, das zu einer deutlichen Reduzierung der erwarteten Photospannung beiträgt. Die Temperaturabhängigkeit der Phasenbreite von Pyrit ist Abbildung 1 zu entnehmen. Aus dem Phasendiagramm wird ersichtlich, daß stöchiometrisches Material nur bei tiefen Temperaturen bzw. erhöhtem Schwefeldruck hergestellt werden kann.

2. Lamellar eutektisches Wachstum bei der Züchtung von CulnS$_2$

Unter den Verbindungshalbleitern, die als Absorbermaterialien für die Anwendung in Dünnichtsolarzellen in Betracht kommen, haben Verbindungen des Typs Culn$_x$ (X = S, Se) mit Chalkopyritstruktur große Beachtung gefunden. Mit polykristallinen Dünnichtsolarzellen p-CulnSe$_2$/n-CdS sind bereits Solarzellen mit Wirkungsgraden bis zu 14% (Universität Stuttgart, Institut für Physikalische Elektronik), mit Culn$_x$S$_2$/CdS Wirkungsgrade bis 7.8% (Arco Solar, Kalifornien) erzielt wor- den. Mit einem polykristallinen n-Culn$_x$S$_2$ Material wurde im HMI mit einer elektrochemischen Solarzelle (Jod/Jodid-Elektrolyt) ein Wirkungsgrad von 9.7% erreicht (Abb. 3). Es ist bekannt, daß die verwendeten Culn$_x$S$_2$-Schichten heterogen aufgebaut sind und neben der Chalkopyritphase noch weitere Phasen enthalten, die alle Halbleiter sind und ähnliche oder größere Bandlücken als Culn$_x$ haben.

![Diagramm](image_url)

Abb. 3: Leistungscharakteristik einer photoelektrochemischen n-CulnS$_2$/ HJ-J$_2$/J$_2$/C-Solarzelle; Elektrolyte: 2 M HJ, 2.5 M CaS$_2$; 50 M M$_2$/J$_2$/Lichtquelle: Oriel Sonnen Simulator, AM 1 (85 \, W/cm2).

Bei der Herstellung von CulnS$_2$-Kristallen (der Schmelzpunkt der Verbindung liegt bei 1090°C) ist zu beachten, daß gemäß dem Phasendiagramm (Abb. 4) Culn$_2$ während des Abkühlprozesses zwei Fest-Fest-Phasenübergänge (Wurtzit-Sphalerit - Chalkopyrit) durchläuft, die beim Übergang Spha- lerit-Chalkopyrit mit einer anisotropen Veränderung der Gitter-
konstanten einhergeht. Als Folge dieser Phasenumwandlungen weisen die aus der Schmelze hergestellten Kristalle oft Mikrorisse auf. Außerdem müssen Maßnahmen getroffen werden, um durch den nicht zu vernachlässigenden Zersetzungsdruk (Cu₃InS₂ zerfällt thermisch in Cu₂S und die Gasspezies S₂ und In₂S₃) über der Schmelze und dem Festkörper während der Kristallisation und dem Abkühlprozeß eine Verschiebung der Zusammensetzung zu vermeiden.

Abb. 5: Cu₃InS₂-Baureihe, gezüchtet durch „gradient freezing“ bei einem Temperaturgradienten von 15 K/cm und einer Abkühlgeschwindigkeit von 1 K/h. Tiegelmaterial: PbN.

barkeit besitzen, jedoch in einigen Fällen durch „Einlagerung einer (112)-Spaltbarkeit vorgetäuscht wird“ (Klockmann’s Lehrbuch der Mineralogie).

In der Tat konnten auf Cu₃InS₂-Spaltflächen durch Röntgenbeugung Reflexe indiziert werden, die im wesentlichen den Phasen Cu₃InS₂, Cu₃InS₃, und mindestens einer weiteren Phase (z. B. Cu₃In₃S₈, Cu₃In₂S₅) zuzuordnen sind. Die Hauptkomponente Cu₃InS₂ ist in den Diffraktogrammen deutlich zu erkennen. Nebenphasen wie Cu₃In₂S₄ und Cu₃In₃S₅ sind jedoch nur auf den Spaltflächen auf Grund von Textureffekten zu erkennen. Die Gitterkonstanten dieser Phasen ist im wesentlichen ein gänzliches Vielfaches der Gitterkonstanten der Hauptkomponente. Es wird deshalb vermutet, daß ein epitaktischer Mechanismus eine Rolle bei der Kristallisation gespielt hat.

Unsere Schwerpunkte sind:

- **Einkristall-Züchtung**
 nach Czochralski-, Bridgman-, Zonen- schmelzverfahren, aus der Gasphase (besonders II-VI-Photo-Halbleiter), durch chemischen Transport etc.

- **Auftragsforschung und Beratung**
 Züchtung nicht kommerzieller Materialien, Verfahrensentwicklung, Dokumentation (Film, Video).

- **Kristallpräparation**
 Orientieren, Sägen, Polieren, Funkenerosion, Orientieren auf ±10—15 Minuten, Gammastrahl-Diffрактометrie.

Bitte fordern Sie unsere Lagerliste an; rufen Sie uns an, wir informieren Sie über unser Produktions- und Lieferprogramm.

Dr. Gerd Lamprecht
Technisches Büro für Kristallzüchtung
II-VI Monokristalle
Lehniger Straße 10-12
7531 Neuhausen
Telefon 07234/1007, Telex 783379

Einkristalle für Forschung und Industrie
Untersuchungen mit dem Rasterelektronenmikroskop, gekoppelt mit einer Mikrosonde zur chemischen Analyse, unterstützen die röntgenographischen Ergebnisse. Die Abbildungen 6.a und 6.b machen die Morphologie eines CulnS₂-Spaltstückes parallel und senkrecht zur Spaltfläche sichtbar. Eine punktweise Analyse der chemischen Zusammensetzung mit der Mikrosonde im mm-Abstand verdeutlicht die Belegung der Spaltfläche mit den schon genannten In-reichen Phasen (Abb. 7). In zuletzt erstarrten Bereichen des Barrens sind Einschlüsse vorzufinden, in denen diese Phasen in Form gut ausgebildeter Kristallite anzutreffen sind. Senkrecht zu den Spaltflächen gewinnt man aus den SEM-Aufnahmen einen Eindruck von der Dicke der CulnS₂-Schichtpakete. Sie liegt in der Größenordnung von 1 µm, die eingeschalteten Fremdphasenschichten sind deutlich dünner (≤ 0.1 µm).

3. Einkristallzüchtung der Clusterverbindung Re₅S₆Cl₄

 Monokline Kristalle von prismatischem Habitus bis zu einer Größe von 5 x 3 x 3 mm³ wurden in einem Temperaturgradien-

Interessenten wenden sich bitte an:

Prof. Dr. Hermann NEELS, Zeititzer Weg 25, O-7254 Machern, Tel. Brandis -3442
ten von 1120 nach 1080°C bei einem Chlordruck von 12 atm geziert (Abb. 8). Die Transportgeschwindigkeit erwies sich als eine empfindliche Funktion des eingestellten Chlordruckes sowie der Züchtungstemperatur. Große Kristalle wurden erhalten, wenn Synthese und Züchtung ohne Gefäßwechsel durchgeführt wurden. Bei der Synthese des Clustermaterials wird die Reaktionssmischung (6 Re + 8 S + 2 Cl₂) für 2 Tage auf 1100°C gehalten und dann mit einer Abkühlrate von 150°C/h abgekühlt. Bei langsamen Abkühlraten (< 25°C/h) zerfällt Re₅S₅Cl₂ in ReS₂ und ReCl₆. Dieser Effekt kann mit dem temperaturabhängigen Verlauf der freien Reaktionsenthalpie nach Gleichung:

\[\text{Re}_5 \text{S}_5 \text{Cl}_2 + 2 \text{Cl}_2 = 4 \text{ReS}_2 + 2/3 \text{Re}_5 \text{Cl}_6 \]

erklärt werden. Unter den in dieser Gleichung genannten Bedingungen ist Re₅S₅Cl₂ unterhalb 900°C thermodynamisch instabil. Durch einen schnellen Abkühlvorgang kann jedoch die Clusterverbindung stabilisiert werden, da sich die ΔG-T-Kurven der Teilreaktionen nahezu decken (Abb. 9).

Mit Hilfe eines Programms zur Berechnung von thermodynamischen Gleichgewichten konnten nach Erstellung der thermodynamischen Datensätze aller im System bekannten Verbindungen die Gleichgewichte und die Existenzbereiche für die festen Phasen ReS₂, Re₂S₃, Re₅S₅Cl₂ und Re₅S₅Cl₆ als Funktion der Partialdruckverhältnisse S/Cl₂ und Cl₂/ReCl₆ und der Temperatur ermittelt werden. Aus diesen Berechnungen wurden die für den chemischen Transport relevanten Gleichungen abgeleitet:

\[\text{Re}_5 \text{S}_5 \text{Cl}_2 + 8 \text{Cl}_2 = 2 \text{Re}_5 \text{Cl}_6 + 4 \text{S}_2 \]
\[\text{Re}_5 \text{S}_5 \text{Cl}_2 + 12 \text{Cl}_2 = 2 \text{Re}_5 \text{Cl}_6 + 4 \text{S}_2 \text{Cl}_6 \]

Aus Berechnungen der Existenzbereiche in log \(\text{p}_{\text{Cl}_2}/\text{p}_{\text{ReCl}_6} \) gegen log \(\text{p}_{\text{Re}_5\text{S}_5\text{Cl}_2}/\text{p}_{\text{Re}_5\text{Cl}_6} \) wird ersichtlich, daß der Stabilitätsbereich der Clusterverbindung mit sinkender Temperatur zunimmt. Um eine ausreichend hohe Transportrate zu erzielen, ist es ratsam, bei relativ hohen Temperaturen zu züchten, wobei jedoch die Gefahr besteht, außerhalb des schmal werdenden Existenzbereiches der Clusterverbindung zu geraten. Bei zu kleinen Temperaturen werden die Transportraten zu klein und die kritische Keimbildungsgröße unterschritten.

5. Tagungsberichte

Der Vortrag von W. Alex, Berlin, wurde über den Einfluß von Schichtdicken der Züchtungsparameter auf das Versetzungsverhalten von FZ- und CZ-Si-Dünnhüllen berichtet. Die Untersuchungsergebnisse wurden mit theoretischen Modellen verglichen und zeigen, daß diese das Versetzungsverhalten noch nicht befriedigend erklären können.

Der Vortrag von A. Cröll aus Freiburg beschäftigte sich mit der Streifenbildung in Si bei Anwendung des FZ-Verfahrens. Durch Magnetfelderwirkung läßt sich die Phasengrenze beeinflussen und dadurch die Generation von Dotierstofftreibenden deutlich verringern.

K. Sonnenberg, Jülich, hob die geringe Versetzungsichte von GaAs, welches durch VB-Verfahren hergestellt wurde, hervor. Die Herstellung erfolgte durch die Verwendung einer vollständigen \(\text{B}_2\text{O}_3 \)-Kapselung der Schmelze, welche durch die gute Benetzbarkeit von Quarzglas möglich ist. So hergestellte Kri-
stalle sind willkürlich, jedoch kann es durch thermische Spannungen, Staub oder Tiegelabrieb zu Polywachstum kommen.

Die von Bischoping u. a. in Freiburg mittels LPEE (Flüssigphasenelektrolyse) hergestellten GaSb und AlGaSb Kristalle dienen in erster Linie Grundlagenuntersuchungen. Bei diesem Verfahren wird das Kristallwachstum mittels Gleichstromfluß durch die Grenzschicht initiiert. Durch geeignete Wahl der Wachstumszelle konnten sowohl radial als auch axial homogene Mischkristalle erhalten werden.

Die Untersuchung der As-Dampfdruckabhängigkeit intrinsischer Effekte in HB-GaAs von T. Hangerleiter, Paderborn, mittels magnetooptischer Spektroskopieverfahren führte zum Nachweis der Ausbreitungseffekte in HB-GaAs. Ihr Einfluß auf die elektronischen Eigen schaften der gezüchteten hochreinen Kristalle wurde erstellt. Insgesamt war der erste lange Nachmittag geprägt von einer Fülle qualitativ hochwertiger und anspruchsvoller Vorträge, welche dem besseren Verständnis des Kristallwachstums beitragen konnten.

A. Erb
K. Fischer

Charakterisiert werden die Kristalle u.a. durch die Messung des Widerstandsprofils mit der Vierpunktmethode (Abstand der Kontakte 1 mm). Für die Züchtung mit konvexer Phasengrenze ergibt sich eine sehr homogene Verteilung des Widerstandes. Die Untersuchungen dienen dem Ziel, die für defekttarmes Wachstum von III-V-Kristallen notwendigen Bedingungen zu verbessern.

Das weitgespannte Einsatzgebiet der thermischen Analyse (TA) für die Kristallzüchtung und -charakterisierung zeigte E. Post (NETSCH Gerätetechnik, SELB) auf.

Es wurden kurz die klassischen TA-Verfahren vorgestellt: Differenz thermométrie (DTA), Dynamische Scanning Calorimetrie (DSC), Thermogravimetrie (TG), Dilatometrie oder Thermi-

Für die Züchtungsvorbereitung ist in erster Linie die Bestimmung der Schmelztemperatur, des Phasendiagramms und der Schmelzenthalpie zur Ermittlung der geeignetsten Züchtungsmethode zu nennen. So wurde für das Phasediagramm AgGaS₂ - AgBr und AgGaS₂ - PbCl₂ mittels TA ein geeignetes Flußmehl zur Züchtung von AgGaS₂ nach dem Fluxverfahren gefunden. Als weiteres Beispiel wurde die Möglichkeit der Bestimmung der Stöchiometrie-Abweichung von LiNbO₃ durch Messung der Temperaturschichtung des ferroelektrischen Phasenübergangs aufgezeigt.

Neben Phasenumwandlungen können Entmischungsvorgänge mit DTA bzw. DSC bestimmt werden. Weitere Einsatzmöglichkeiten im Umfeld der Kristallzüchtung sind: Bestimmung der thermischen Ausdehnung (TMA), Bestimmung der thermischen Beständigkeit in unterschiedlichen Gasatmosphären (TG oder DSC), Bestimmung der spezifischen Wärmekapazität cₚ (DSC), Stöchiometriebestimmung von Kristallen (Ermiördigung von Tₑₜ durch Verunreinigungen).

J. Baumgartl
M. Hornung

Der Donnerstagnachmittag stand unter der Überschrift „Lasernet und Supraleitung“. Im Hauptvortrag berichtete Dr. Perner von MONOKRISTALY (CSF) über Czochralski-Züchtung und Eigenschaften von Oxidkristallen für Laser. Dabei bediente er die Kristallzüchtung von YAG - (Y₃Al₅O₁₂), YAP - (YAlO₃) und Saphir-Einkristallen. Für die Laseranwendungen sind vor allem die Emissionswellenlängen der Dotierungen (Cr³⁺ und die Seltenen Erden Nd³⁺, Er³⁺, Tm³⁺ und Ho⁺⁺) maßgebend. λ = 1 ... 3 µm. Dabei müssen die Kristalle von hervorragender optischer Qualität sein, die von Zwillingbildung, Sprüngen, Blasen und Streuzentren befreit ist. Ganz besonders störend sind Verunreinigungen wie H₂O, CO und Kohlenwasserstoffe, die Molybdän aus dem Mo-Tiegel lösen und oxidieren können. Dies wird durch eine reduzierende Atmosphäre (H₂) im Rezipienten verhindert.

Herr Perner ging in seinem Vortrag insbesondere auf das Phasediagramm Y₂O₃ - Al₂O₃ und auf die Verteilungskoeffizienten der Dotierungen ein.

Fluorid-Laserkristalle standen für Herrn H. Pauß von der Universität Stuttgart im Zentrum seines Vortrages. Er berichtete von Kristallzüchtungsversuchen mit den Perowskiten K₃MgF₃, KZnF₃, NaMgF₃, dem Elpasolith K₃NaAlF₆. Dabei beschäftigten ihn die Fragen, auf welche Gitterplätze im Kristall sich die Dotierungen (Ta⁺⁺, Ce³⁺, Sm³⁺, Eu²⁺ und Yb³⁺) einbauen und wie groß die Lasereffizienz (d.h. Absorptionskonstante, Quantenausbeute etc.) der Dotierungsionen ist.

Frau H. Römer von der Universität Frankfurt hatte Bestimmungen des effektiven Verteilungskoeffizienten von Nd³⁺ im Kristallsystem ZrO₂/Y₂O₃ durchgeführt. Beim Skuill-Schmelzverfahren ermittelte sie durch Dotierungsprofile die Wachstumsgeschwindigkeit der Kristalle, die Konzentration der Dotierung bestimmte sie aus Absorptionsmessungen und mit den Parametern für die Diffusion konnte sie dann den effektiven Verteilungskoeffizienten berechnen.

Th. Haegeleiter

Temperatur und Zusammensetzung waren dabei beträchtlich. Es steht zu befürchten, daß sich auch diese Phasendiagramme mit dem Fortschreiten der Korrosion weiter verändern.

Th. Wolf

gelbe Färbung auf. Ein Exemplar von etwa 3 mm Durchmesser wurde der DGKK als Geschenk überreicht.

M. Wienecke

Über die im Rahmen der unbemannten sowjetischen Weltraummission FOTON 7 im Oktober 1991 durchgeführten Experimente zum Wachstum von CdTe nach der travelling heater method berichtete Herr M. Salk vom Kristallographischen Institut der Universität Freiburg. Sein Vortrag stellt erste Ergebnisse vergleichender Untersuchungen an Kristallen vor, die unter unterschiedlichen Bedingungen eines definierten Materialtransports in der Te-reichen Lösungszone (1 g, µg, jeweils mit und ohne transversal rotierendem magnetischen

EAGLE Picher

• Halbleiter-Programm:
 - Dünnicht-Epitaxie MOCVD, LPE (CdTe/Al₂O₃, HgCdTe, ...)
 - polierte Ge-Substrate
 - II-VI: Substrate, Einkristalle (PVT, Bridgman), Polykristalle und ultrareine Pulver (CdS, CdSe, CdTe, ZnTe, ZnSe, ZnS)

• Werkstoff-Programm:
 - ultrareine Ge- und Ga-Verbindungen
 - ultrareine Gase (TMG, ³¹BF₃, Germane, ...)
 - Grundstoffe für CVD und Dotierung (TEOS, TCA, POCl₃, ...)

Wir erfüllen höchste Ansprüche und informieren Sie gerne über unsere Produkte:
Eagle-Picher Industries Materials GmbH
Verrenberger Weg 20, 7110 Öhringen
Tel: (07941)-6030 Fax: (07941)-60363
Feld von 2 mT) gezüchtet wurden. Begleitende Berechnungen zum Temperaturfeld und den Strömungsverhältnissen in der flüssigen Zone zeigten den Einfluß sowohl der reduzierten Schwerebeschleunigung als auch des Magnetfeldes auf die Krümmung der Phasengrenzflächen. Neben der Präsentation der ersten interessantesten Ergebnisse nutzte Herr Salk die Gelegenheit, die Möglichkeiten vorzustellen, die sich mit der Nutzung der ehemals sowjetischen Weltraumkapazitäten auf dem Gebiet der unbemannten Missionen für materialwissenschaftliche Untersuchungen eröffnet. Ein Blick auf die Liste der Koautoren aus zahlreichen Instituten (u.a. aus Rußland und Lettland) läßt hoffen, daß die zukünftige Zusammenarbeit nicht durch die veränderten politischen Verhältnisse erschwert wird.

P. Gille

CdTe wurde In-dotiert aus Te-reichen Schmelzlösungen mit dem vertikalen Bridgman-Verfahren (Te = 1050°C, entspricht y = 0,55 gemäß CdTe) und dem THM-Verfahren (TL = 700°C) von E. Weigel vom Kristallabor der Universität Karlsruhe gezüchtet. Gegenstand der Untersuchungen war der Einfluß von Fremdstubrenzen und Eigenfehlstellen auf das elektrische Verhalten der Kristalle in Abhängigkeit von den Züchtungsparametern. Atomabsorptionspektrometrische Messungen mit der Flammen- und Graphitrohrttechnik zeigten deutliche Unterschiede im Fe-Gehalt (3 ppm-a bzw. 1 ppm-a). Die Differenz wird durch die unterschiedlichen Präparations- schritte begründet. Der Einfluß des Dotierelements Indium auf die elektrischen Eigenschaften konnte näher bestimmt werden. Liegt die In-Konzentration unter 10⁻⁸ cm⁻³, so ist das CdTe p-leitend. Bei höheren In-Konzentrationen wird n-leitendes Material erhalten. Bei In-Gehalten unter 1 ppm entsteht sehr hochohmiges n-leitendes CdTe (10⁸ - 10¹⁰ Ωcm). Photolumineszenzerspekten zeugen deutliche Unterschiede zwischen In-dotiertem und undotiertem CdTe. In-dotierte Kristalle liefern dabei äußerst strukturmäßige PL-Spekten mit nur einer breit verschmierten Bande im Bereich um 1,5 eV. Der Verteilungskoeffizient von In im CdTe wurde zu kₘ = 0,2 bestimmt.

M. Mühlberg

M. Neubert

Zusammenfassung zu den Postersitzungen der DGKK-Jahrestagung 1992

Auf den Postersitzungen wurden insgesamt 38 Beiträge zu den verschiedenen Gebieten präsentiert. Es gab 10 Poster zum Thema Hoch Tc- Materialien, 15 zu Verbindungshalbleitern, 2 zu Silizium, 4 zu optischen Materialien und weitere 7, die sich mit anderen Substanzen oder speziellen Techniken befaßen. Folgender, hoffentlich nicht zu subjektivistischer, Eindruck hat sich ergeben:

Ebenfalls der Perfektionierung bewährter Züchtungstechniken widmeten sich die Autoren der Poster über Si-Kristallzüchtung. So präsentierte A. Lüdge aus Berlin vergleichende Messungen und Berechnungen des Einflusses der Form von Induktoren auf das Temperaturfeld.

Insgesamt fiel der Trend zu konservativen Züchtungstechniken, besonders der Bridgman-Technik auf. Offenbar lassen sich durch Verfeinerungen der bekannten Verfahren und eine sorgfältige Analytik neue und für die Materialforschung interessante Ergebnisse erzielen.

T. Frieling, H. Römer, T. Wilke

5.2. Bericht über das „Institute for Single Crystals“ in Kharkov/Ukraine

Das Institut (Leiter: Prof. V.P. Seminozhenko) hat insgesamt 140 Mitarbeiter, davon 50% mit Promotion. Etwa die Hälfte der Beschäftigten arbeiten in Pilotanlagen in der Einkristallproduktion, die andere Hälfte in der Forschung. Schwerpunkte der Forschung sind:

1. Einkristalle für die Optik:
 - Kristalle als aktives Lasermaterial: YAG: Nd; GSGG: Nd, Cr, Al$_2$O$_3$; Ti; Mg$_2$SiO$_4$;
 - Kristalle mit elektroptischen und nichtlinear optischen Eigenschaften: KDP, DKDP, LiIO$_3$, LiNbO$_3$, LiTaO$_3$, TGS;
 - Kristalle für optische Bauelemente und Substrate: KCl, KBr, Al$_2$O$_3$, SrTiO$_3$, LaAlO$_3$;

2. Szintillatoren und Detektoren:
 - Alkalihalogenide, dotiertes Al$_2$O$_3$, BGO, CdWO$_4$, usw.
 - Organische und plastische Materialien: Flüssigkeitsszintillatoren, Lumiphore, org. Szintillatoren, Materialien für Lumineszenzspektroskopie, Enzyme für die Medizin, usw.

3. Hochtemperatur supraeiter:
 - Pulver, Keramik, Einkristalle, dünne Filme, schmelztexturiertes Material

4. Implantate für die Medizin auf Al$_2$O$_3$-Basis

5. Einkristalle Al$_2$O$_3$-Rohre, Tiefen, Profile (Stepanov-Verfahren)

Das Institut versucht jetzt, Kontakte zu anderen Forschungsgruppen, insbesondere im westlichen Ausland, herzustellen, und will Kristalle verkaufen. Wir haben den Kollegen in Kharkov angeboten, sich am Stand unseres Labors auf der Hannoverindustrie (1. – 8. 4. 92) zu beteiligen und Proben des hohen Kohns zu zeigen. Das Angebot wurde akzeptiert und ich lade alle Leser dieses Artikels ein, auf der Hannovermesse selbst die Kristalle zu begutachten. Leider hat das Institut bis zum 9. 3. 1992 keine interessanten Proben übersandt und scheint an der angebotenen Hilfe nicht wirklich interessiert zu sein.

An dem Workshop über Hochtemperatur supraeiterleitung nahmen etwa 100 Personen teil, davon 90% aus der ehemaligen UdSSR. Insbesondere der Kontakt zu diesen Kollegen machte diese Tagung besuchenswert.

Besonders interessante Vorträge wurden von Bariolo (Minsk), Emel'chenko (Chernogolowka) und Leonuk (Moskau) gehalten. Bariolo berichtet von der Züchtung von 123 aus Y$_2$O$_3$-Tiegeln und hat deshalb keine Probleme mit Verunreinigungen in den Kristallen. Emel'chenko benutzt einen Al$_2$O$_3$-Tiegel, auf dessen Boden sich fest 123 Phase befindet. Übergang des Nährmediums befindet sich CuO/SiO$_2$-Flux; die Tiegelbodens hat etwa 10°C kälter als die Tiegeloberfläche. Im Flux befindet sich azetin aufgehangt ein gekühlter Keimhalter mit Kristallen. Beim Brennen des Tiegel rührt der Kristall die Schmelze langsam durch und baut dadurch lokale Vereinigungen im Flux ab. Leonuk berichtet über ihre Kristallzüchtung der verschiedenen Wismut-Supraleiterphasen: Da diese strukturell sehr ähnliche sind, verwendete sie zur Charakterisierung der vielen durcheinander wachsenden Phasen Elektronenmikroskopie.

Den Organisatoren des Workshops, insbesondere Prof. Sobolev und Swetiana sei dafür herzlich gedankt.

W. Aßmus

5.3 Reisebericht aus Minsk

Th. Wolf

5.4. NEUIGKEITEN

Russische Kristallzüchterkollegen versuchen nach dem Zusammenbruch der UdSSR, sich mit ihrem 'Know-how' an die Marktwirtschaft anzupassen und bieten sich auf dem Markt mit neuen Materialien an.

Verbindungen ABO$_3$ mit A=Sb$^{+}$, B$^{2+}$; B=Nb$^{4+}$, Ta$^{5+}$, Sb$^{5+}$

Eigenschaften und Anwendungen.

Die Kollegen bieten folgende Arten der Zusammenarbeit an:

- Verkauf der Kristalle, z.B. SbTaO$_5$
- Organisation gemeinsamer Produktion von Anwendungs- systemen basierend auf a. a. Materialien
- gemeinsame Kooperation zu Untersuchungen für neue Anwendungen.

Kontaktadresse:

Dr. V.F. Peskin, 'Promtechindustria' 2nd Street of Pugachow 3, Bl. 1, R. 3; Moscow 107553, Russia

6. Übersichtsartikel

Die Flüssigphasenabscheidung (Liquid Phase Electro Epitaxy, LPE)

G. Bishopink

Kristallographisches Institut, Universität Freiburg
Hebelstraße 25, 7800 Freiburg

1. Funktionsprinzip

a) Peltier-Effekt
Das III-V-Halbleitersubstrat und die metallische Lösung haben verschiedene Peltier-Koeffizienten, so daß ein Gleichstrom, der die Grenzfläche beider Substanzen passiert, je nach Stromrichtung Wärmeenergie freisetzt oder absorbiert. Die Wärmemenge \(Q \) ist proportional zur Differenz der beiden Peltier-Koeffizienten \(\pi_p \) und \(\pi_n \) und der Gleichstromdichte \(J \). Bei Stromdichten von 2–20 A/cm² beträgt die daraus resultierende Temperaturänderung \(\Delta T \) für GaAs-Substrate \((n = 5 \cdot 10^{18} \text{ cm}^{-3})\) an der Phasengrenzfläche etwa 0.1–3°C [5]. Bei negativer Polung eines n-leitenden Substrats ist die Temperaturänderung positiv und führt zu einer Untersättigung der Lösung an der Grenzfläche, während eine positive Substratpolung eine negative Temperaturänderung und damit eine Übersättigung hervorruft (vergl. Abb. 2). P-leitendes Substratmaterial zeigt ein inverses Verhalten [6].

b) Elektromigration
Die Elektromigration ist ein Impulsautausch der Elektronen mit den gelösten Komponenten innerhalb der metallischen Lösung [7]. Fließt ein Gleichstrom durch ein Halbleitersubstrat \(J \) durch eine metallische Lösung mit Leitfähigkeit \(\sigma \), so bewegen sich die gelösten Materialien mit der Geschwindigkeit \(v = \mu \cdot J/\sigma \), wobei \(\mu \) die Beweglichkeit der Komponenten in der Lösung angibt. Die Beweglichkeit liegt für metallische III-V-Lösungen im Bereich von \(10^2 - 10^3 \text{ cm}^2/\text{V s} \) [6]. Bei positiver Polung des Substrats bewegen sich die gelösten Teilchen in Richtung des Substrats und bauen eine Übersättigung an der Phasengrenze auf (siehe Abb. 2). Bei umgekehrter Polung kehrt sich die Bewegungsrichtung um, was zu einer Untersättigung an der Grenzfläche führt [8].

Die LPEE erlaubt damit die direkte Kontrolle der Wachstumsgeschwindigkeit, die sich bei III-V-Halbleitern mit typischen Stromdichten von 2–20 A/cm² im Bereich von 0.2–1.5 μm/min bewegt.

c) Joulesche Wärme
Die Joulesche Wärme \(Q \) entsteht an elektrischen Widerständen \(R \), und nimmt quadratisch mit der Stromdichte \(J \) zu:
\[Q = R \cdot J^2. \]

Aus der Beschreibung des Funktionsprinzips der LPEE werden die Vor- und Nachteile dieses Verfahrens deutlich:

Vorteile:
- Wachstum von defektfreien Kristallen mit Schichtdicken im Bereich von mm in der Qualität der LPE-Schichten
- Wachstum von ternären III-V-Halbleitern mit kontrollierbarer homogener Dosiskonzentration
- Steuerung der Wachstumsgeschwindigkeit über die Stromdichte
- Züchtung bei konstanter Wachstumstemperatur

Nachteile:
- Morphologie und Wachstum reagieren empfindlich auf Inhomogenitäten im Stromfluß an der Phasengrenze
- niedrige Wachstumsgeschwindigkeiten im Bereich von μm/min

2. Theoretische Beschreibung des Materialtransports
Für den Materialtransport der gelösten Komponenten von Vorratsmaterial zur Wachstumsfront innerhalb der metallischen schmelzflüssigen Lösung wird eine Konzentrations-
differenz zwischen den beiden Phasengrenzen benötigt. Bei der LPEE wird die Konzentrationsdifferenz durch Elektromigration und den Peltier-Effekt hergestellt, so daß für jeweils eine gelöste Komponente i das 2. Ficksche Gesetz für bewegte Phasengrenzflächen gilt:

\[
\frac{\delta x_i}{\delta z} + \frac{\delta x_i}{\delta t} = \frac{\delta x_i}{\delta t} = \frac{D_i}{\delta z} \frac{\mu_i}{\alpha} \frac{x_i}{x_i} \quad (1)
\]

\(z: \) Ortskoordinate in Wachstumsrichtung
\(D_i: \) Diffusionskoefizient
\(t: \) Zeit
\(\alpha: \) Leitfähigkeit der Lösung
\(x_i: \) Liquiduskonzentration der gelösten Komponente i

Für ein System mit n gelösten Komponenten existieren n-1 unabhängige Transportgleichungen. Bei der LPEE wird die Elektromigration über die Addition der Elektronengeschwindigkeit \(V_e = \mu_i / \alpha \) von Komponente i als zusätzlichem Beitrag zum Materialtransport berücksichtigt [6].

Zusätzlich gelten folgende Rand- und Anfangsbedingungen, die durch Vorgabe der Liquiduskonzentration \(x_i^0 \) an der Lösungsfront das Phasendiagramm berücksichtigen:

\[
x_i(0,t) = x_i^0 \quad \text{für} \quad t > 0 \quad \text{und} \quad z = 0 \quad (2)
\]

oder:

\[
x_i(0,t) = x_i^0 \quad \text{für} \quad z > 0 \quad \text{und} \quad t = 0 \quad (3)
\]

\[
x_i(0,t) = x_i^0 \quad \text{für} \quad z = 0 \quad \text{und} \quad t > 0 \quad (4)
\]

\[
D_i \frac{\delta^2 x_i}{\delta z^2} + \frac{\mu_i}{\alpha} \frac{x_i}{x_i} = 0 \quad \text{für} \quad z = 0 \quad \text{und} \quad t > 0 \quad (5)
\]

\[
D_i \frac{\delta^2 x_i}{\delta z^2} + \frac{\mu_i}{\alpha} \frac{x_i}{x_i} = 0 \quad \text{für} \quad z = 0 \quad \text{und} \quad t > 0 \quad (6)
\]

\(x_i^0: \) Soliduskonzentration der Komponente i im gewachsenen Kristall

Gl. (5) verlangt ein Wachstum gemäß der Liquiduslinie des Phasendiagramms. Gl. (6) ist die zeitabhängige Kontinuitätsgleichung, die die Massenerhaltung zwischen der Lösung und Wachstumsfront berücksichtigt. Jasztzebski et al. [6] berechnete unter der Annahme, daß die Wachstumsgeschwindigkeit \(v \) klein im Vergleich zur Elektronengeschwindigkeit \(V_e = \mu_i / \alpha \) ist, folgende Beziehung für die Wachstumsgeschwindigkeit \(v \):

\[
v = \Delta T_e \frac{D}{\delta x_i} \frac{\partial x_i}{\partial x_i} \left[\frac{1}{\sigma_i} \left(\frac{\mu_i}{\alpha} \frac{x_i}{x_i} - \frac{x_i}{x_i} \right) \right] \quad (7)
\]

ohne Konvektion:

\[
v = \Delta T_e \frac{D}{\delta x_i} \frac{\partial x_i}{\partial x_i} \left[\frac{1}{\sigma_i} \left(\frac{\mu_i}{\alpha} \frac{x_i}{x_i} - \frac{x_i}{x_i} \right) \right] \quad (8)
\]

wobei der Peltier-Effekt mit folgender Beziehung berücksichtigt wurde:

\[
\Delta T_e = \frac{x_i^0 - x_i^0}{\frac{d}{dt} \left(\frac{V_e}{\alpha} \right)} \quad (9)
\]

\(T_e: \) Wachstumstemperatur

Die Wachstumsgeschwindigkeit \(v \) besteht in beiden Fällen aus zwei Summanden. Der erste Summand beschreibt die Wachstumsgeschwindigkeit verursacht durch den Peltier-Effekt, der zweite Summand berücksichtigt die Elektromigration. Während der Einfluß des Peltier-Effekts zeitabhängig ist, ist der Materialtransport durch Elektromigration zeitunabhängig. Eine analytische Lösung der Transportgleichung mit Einbeziehung der Anfangs- und Randbedingungen ist ohne Vernachlässigung von \(V_e \) ebenfalls in Gl. (2) möglich. Der Massentransport durch Elektromigration erhält dann eine schwache Zeitabhängigkeit für kleine Wachstumszeiten \(t \ll 1 \ h \).

Im Fall von n-komponentigen Substanzen bestehen die Gl. (7) – (9) aus Summen mit \((n-1) \)-Gliedern. Die Darstellung der Wachstumsgeschwindigkeit \(v \) als Funktion der Stromdichte \(J \) ist in Abb. 3 (8), im Vergleich mit theoretischen Berechnungen und experimentellen Messungen aus GaAs-Wachstumsexperimenten bei 800°C aus Ga-reicher Lösung, dargestellt. Die Wachstumsgeschwindigkeit \(v \) ist linear abhängig von der Stromdichte, theoretische und experimentelle Werte korrelieren in ausgewiesener Art. Durch den geringen Unterschied der Wachstumsgeschwindigkeit zwischen \(p- \) und \(n- \) leitenden Substanzen wird deutlich, daß der Peltier-Effekt verhältnismäßig gegenüber der Elektromigration ist. Diese Tatsache bestätigt sich ebenfalls in Abb. 4, wo die Wachstumsgeschwindigkeit als Funktion der Zeit aufgetragen ist. Berechnet wurde dieses Diagramm für die Züchtung von AlGaAs mit \(x = 0.2 \) für \(n- \) und \(p- \) leitenden GaAs Substrate und einer Wachstumstemperatur von 550°C aus Ga-reicher Lösung. Die Stromdichte beträgt 10 A/cm². Gleichzeitig ist \(v \) in zwei Komponenten zerlegt: der Anteil der Wachstumsgeschwindigkeit verursacht durch den Peltier-Effekt (Pel) und dem Anteil, der aus der Elektromigration (Mig) resultiert. Für \(n- \) leitende Substrate verursacht die Peltier-Kühlung eine stationäre Wachstumsgeschwindigkeit von 0,035 mm/Tag, während für \(p- \) leitende GaAs-Substrate bedingt durch die Peltier-Wärme eine Auflösung des Substrats stattfindet (negative Wachstumsgeschwindigkeit). Die Zeitabhängigkeit des

\[
\text{Current density (A/cm}^2\text{)}
\]

\[
\text{Growth velocity (μm/min)}
\]

Abb. 3: Wachstumsgeschwindigkeit von GaAs gewachsen aus Ga-reicher Lösung bei 800°C als Funktion der Stromdichte für \(n- \) und \(p- \) leitende Substrate, Substratdicke 300 μm [6]

3. Dotierstoffverteilung
Der Dotierstoffeinbau im gewachsenen Kristall ist abhängig von der Dotierstoffkonzentration in der Lösung am Ort der Phasengrenze und dem Verteilungskoeffizienten k_{eff} des Dotierstoffs. Aus der Transportgleichung mit entsprechenden Randbedingungen (Massenerhaltung) und Festlegung der Anfangskonzentration des Dotierstoffs läßt sich die Dotierstoffverteilung berechnen [12,13,14,15]. Pfann und Wagner [16] berechnen für den stationären Fall unter Berücksichtigung der Konvektion mittels Diffusionsrandschicht δ folgenden effektiven Verteilungskoeffizienten k_{eff}:

$$k_{\text{eff}} = k_s \left(\frac{1 - \frac{\delta_s}{\delta}}{\frac{1}{\alpha} + \frac{\delta_s}{\delta}} \right)$$

wobei α die spezifische Beweglichkeit und D_s der Diffusionskoeffizient des Dotierstoffs s ist. Ist $J = 0$ geht Gl. (10) in das bekannte BPS-Gesetz über. Mit der Näherung $\nu < \mu_s/\alpha$ und der Berücksichtigung der Temperaturabhängigkeit des Verteilungskoeffizienten k_s folgt für Gl. (10) die Näherung:

$$k_{\text{eff}} = k_s \left(\frac{1 - \frac{\delta_s}{\delta}}{\frac{1}{\alpha} + \frac{\delta_s}{\delta}} \right) \delta_{\text{eff}}$$

Eine Änderung des effektiven Verteilungskoeffizienten k_{eff} kann also durch zwei Mechanismen ausgelöst werden: Änderung der Elektromigrationstransporte und/oder durch Änderung der Peltter-Kühlung bzw. Erwärmung. Abb. 5 zeigt anschaulich die Änderung der Sn-Konzentration in GaAs als Funktion der Stromdichte J [12].

Die Variation von k_{eff} ist letztendlich begrenzt durch die Dicke der Diffusionsrandschicht δ und durch die Stromdichte J, die aufgrund Joulescher Wärme nicht beliebig groß gewählt werden kann. Innerhalb stationärer Wachstumsbedingungen sind somit maximale Änderungen von k_{eff} von 20–30% möglich [15].

4. Kristallmorphologie

5. Experimentelle Realisierung
Die wesentlichen Kriterien für die Entwicklung einer LPE-Züchtungsapparatur sind zum einen eine isotherme Tempera-
Anode und Kathode geschlossen ist (siehe Abb. 7 b). Zur Steuerung und Einstellung der Züchtungstemperatur ist 2 mm unterhalb des Substrats ein Thermoelement, eingefügt in eine Quarzkapillare, positioniert. Der massive Aufbau der Wachstumszelle aus Graphit bewirkt durch die sehr gute Wärmeleitfähigkeit von λ = 110 W/mK einen weitgehenden Ausgleich von lokal erzeugten Temperaturgradienten innerhalb der Wachstumszelle. Nach Beendigung des Wachstums wird der Kathodenteil der Wachstumszelle wieder in die obere Position bewegt, so daß der elektrische Kontakt zwischen Anode und Kathode geöffnet ist. Von entscheidender Bedeutung ist der elektrische Widerstand des Kontakts Substrat – Anode, weil gerade hier Joulesche Wärme besonders leicht entsteht und massiv das Wachstum stört. Dieser Kontakt muß deshalb eine laterale homogene niedrige Widerstandserhöhung und eine Langzeitstabilität von bis zu 150 h bei Temperaturen von bis zu 900 °C besitzen. Diese Forderungen lassen sich durch eine Ga_{0.5}Al_{0.5} Schicht mit einer Dicke von 200–500 μm oder durch ein Schichtsystem aus Ga_{0.5}Al_{0.5}–Ta–Folie–Ga_{0.5}Al_{0.5} erfüllen [8,9,19].

6. Wachstumsresultate

Bis heute wurde eine Vielzahl von Halbleitermaterialien mit der LPE hergestellt: InSb [3], GaAs [11,15,19,20], GaP [22,23], GaSb [24,25], InAs [26], InP [6,27], (Ga,Al)As [2,7,8,28,29], (In,Ga)P [30,31], (Ga,Al)Sb [24,25], InGaAsP [32], SiC [33] (Hg,Cd)Te [34,35]. Da die LPE die direkte Kontrolle der Wachstumsgeschwindigkeit durch die Stromdichte erlaubt, wurden sehr erfolgreich Heteroepitaxieschichtsysteme für p−n-Übergänge oder DH-Laser hergestellt [36,37]. So kann beispielsweise die sehr dünne aktive Schicht eines DH-Lasers sehr viel langsamer epitaktisch aufgewachsen werden, und damit wesentlich exakter und gleichzeitig mit hoher strukturierter Perfektion, als die unkritischen nichtaktiven Schichten. Bedingt durch die Verwendung von Vorratsmaterial zur Nachsättigung der Lösung lassen sich insbesondere sehr dicke Schichten herstellen. Abb. 8 zeigt eine im Kristallograph.-Inst./Univ. Freiburg hergestellte Schicht aus (Al,Ga)Sb mit 2 mm Dicke und 15 mm Durchmesser, gewachsen auf einem GaSb-Substrat [Kristallographisches Inst./Universität Freiburg].

2 mm Dicke und 15 mm Durchmesser, während Abb. 9 den axialen Al-Soliduskonzentrationsverlauf einer (Al,Ga)Sb-Schicht von 1 mm Dicke zeigt. Die LPE ermöglicht demzufolge auch das Wachstum von ternären oder quaternären Systemen mit einer definierten Zusammensetzung und homogener Materialverteilung.

Abb. 6: Oberflächenmorphologie von GaAs-Kristallen (Durchmesser 20 mm) gewachsen aus Ga-reicher Lösung bei unterschiedlichen Bedingungen: a) 850° C, J=5 A/cm², b) 850° C, J=10 A/cm², c) 950° C, J=10 A/cm². Übergang von stabilen zu instabilen Wachstumsbedingungen [8].

Abb. 7: Wachstumszelle einer vertikalen LPE-Apparatur für die Züchtung von Volumenkristallen, a) Positionierung für den Ausheizprozeß, b) Positionierung für den Wachstumsprozeß [Kristallographisches Inst./Universität Freiburg].

Als Materialien für die Wachstumszelle wurde Graphit und pyrolytisches BN als elektrischer Isolator verwendet. Die Zelle besteht im wesentlichen aus zwei Komponenten: einem oberen beweglichen Teil, der die Kathode bildet und den Vorrat und die metallische Lösungszone enthält, und einem unteren Teil, der Anode mit Substrat und elektrischem Kontakt Anode – Substrat. Abb. 7 a zeigt die Positionierung der Wachstumszelle während des Ausheizens der Materialien mit Pd-diffundiertem hochreinem H₂. Lösung, Vorrat und Substrat sind für H₂ frei zugänglich, so daß ein optimaler Reinigungseffekt erzielt wird. Durch eine axiale Abwärtsbewegung der Kathode in Richtung Anode fließt die Lösung auf das Substrat. Die Abwärtsbewegung endet, wenn der Vorrat in Kontakt mit der Lösungszone, und damit der elektrische Kontakt zwischen Kathode und Anode hergestellt ist (siehe Abb. 6 b). Zur Steuerung und Einstellung der Züchtungstemperatur ist 2 mm unterhalb des Substrats ein Thermoelement, eingefügt in eine Quarzkapillare, positioniert. Der massive Aufbau der Wachstumszelle aus Graphit bewirkt durch die sehr gute Wärmeleitfähigkeit von λ = 110 W/mK einen weitgehenden Ausgleich von lokal erzeugten Temperaturgradienten innerhalb der Wachstumszelle. Nach Beendigung des Wachstums wird der Kathodenteil der Wachstumszelle wieder in die obere Position bewegt, so daß der elektrische Kontakt zwischen Anode und Kathode geöffnet ist. Von entscheidender Bedeutung ist der elektrische Widerstand des Kontakts Substrat – Anode, weil gerade hier Joulesche Wärme besonders leicht entsteht und massiv das Wachstum stört. Dieser Kontakt muß deshalb eine laterale homogene niedrige Widerstandserhöhung und eine Langzeitstabilität von bis zu 150 h bei Temperaturen von bis zu 900 °C besitzen. Diese Forderungen lassen sich durch eine Ga_{0.5}Al_{0.5} Schicht mit einer Dicke von 200–500 μm oder durch ein Schichtsystem aus Ga_{0.5}Al_{0.5}–Ta–Folie–Ga_{0.5}Al_{0.5} erfüllen [8,9,19].

6. Wachstumsresultate

Bis heute wurde eine Vielzahl von Halbleitermaterialien mit der LPE hergestellt: InSb [3], GaAs [11,15,19,20], GaP [22,23], GaSb [24,25], InAs [26], InP [6,27], (Ga,Al)As [2,7,8,28,29], (In,Ga)P [30,31], (Ga,Al)Sb [24,25], InGaAsP [32], SiC [33] (Hg,Cd)Te [34,35]. Da die LPE die direkte Kontrolle der Wachstumsgeschwindigkeit durch die Stromdichte erlaubt, wurden sehr erfolgreich Heteroepitaxieschichtsysteme für p−n-Übergänge oder DH-Laser hergestellt [36,37]. So kann beispielsweise die sehr dünne aktive Schicht eines DH-Lasers sehr viel langsamer epitaktisch aufgewachsen werden, und damit wesentlich exakter und gleichzeitig mit hoher strukturierter Perfektion, als die unkritischen nichtaktiven Schichten. Bedingt durch die Verwendung von Vorratsmaterial zur Nachsättigung der Lösung lassen sich insbesondere sehr dicke Schichten herstellen. Abb. 8 zeigt eine im Kristallograph.-Inst./Univ. Freiburg hergestellte Schicht aus (Al,Ga)Sb mit 2 mm Dicke und 15 mm Durchmesser, während Abb. 9 den axialen Al-Soliduskonzentrationsverlauf einer (Al,Ga)Sb-Schicht von 1 mm Dicke zeigt. Die LPE ermöglicht demzufolge auch das Wachstum von ternären oder quaternären Systemen mit einer definierten Zusammensetzung und homogener Materialverteilung.

Abb. 6: Oberflächenmorphologie von GaAs-Kristallen (Durchmesser 20 mm) gewachsen aus Ga-reicher Lösung bei unterschiedlichen Bedingungen: a) 850° C, J=5 A/cm², b) 850° C, J=10 A/cm², c) 950° C, J=10 A/cm². Übergang von stabilen zu instabilen Wachstumsbedingungen [8].

Abb. 7: Wachstumszelle einer vertikalen LPE-Apparatur für die Züchtung von Volumenkristallen, a) Positionierung für den Ausheizprozeß, b) Positionierung für den Wachstumsprozeß [Kristallographisches Inst./Universität Freiburg].

Abb. 8: Foto eines Al_{0.5}Ga_{0.5}Sb-Kristalls mit 2 mm Dicke und 15 mm Durchmesser, gewachsen mit LPE auf einem GaSb-Substrat [Kristallographisches Inst./Universität Freiburg].

2 mm Dicke und 15 mm Durchmesser, während Abb. 9 den axialen Al-Soliduskonzentrationsverlauf einer (Al,Ga)Sb-Schicht von 1 mm Dicke zeigt. Die LPE ermöglicht demzufolge auch das Wachstum von ternären oder quaternären Systemen mit einer definierten Zusammensetzung und homogener Materialverteilung.
7. Zusammenfassung

8. Literatur

Mitteilungen anderer Gesellschaften

AACG

In der Winterausgabe des Newsletters ist die vollständige Mitgliederliste der AACG wiedergegeben. Auf diesen Schwerpunkt dieser Ausgabe geht D. Brandle auch in der President’s Corner ein. Dadie Wiedergabe der Mitgliederliste im Newsletter die sonst üblichen Fachartikel verdrängt hat, wünscht sich D. Brandle ein Feedback von den Mitgliedern, ob die neuesten Mitgliederverzeichnisse in regelmäßigen Abständen im Newsletter veröffentlicht werden sollen, oder ob dafür eine andere Form gefunden werden muß.

BACG

Im April 91 fand aus Anlaß des 80. Geburtstages von Sir Charles Frank ein Symposium in der Universität Bristol statt. Dazu ist jetzt ein Buch erschienen, das in dieser Ausgabe des Newsletters ausführlich besprochen wird. Es folgt ein Konferenzbericht über „Crystal Growth of Biological Macromolecules“. Die Konferenz fand im August 91 in Freiburg statt. Im Anschluß daran werden die Frühjahrsausgabe des DGKK-Mitteilungsblattes und die Herbstausgabe des AACG Newsletters besprochen.

GFV
Computergestützte Prozeßautomatisierung:

- Gashandling (Mischung, Druck)
- Steuerung v. Ventilen u. MFCs
- Plasmatechnologie
- Temperaturregelung
- Mehrzonenöfen
- Traveling-Heater-Systeme

1. Einkristallziehanlagen
 - Hochdruckanlage (100 bar)
 - Czochralski, Bridgman u. Floatzone
 - Niederdruckanlage System MALVERN

2. Öfen u. Zubehör
 - Mehrzonenöfen, Rohröfen
 - Diffusionsofen (3-Deck, 3-Zonen)
 - Hüttner HF-Generator 15 KW, 25 KW
 - Div. Vakuumkessel

3. Beschichtungs-Drehbank für Glasfasern

4. Balzers Aufdampfanlagen mit Turbopumpstand

5. Heißpresse für Forschungsaufgaben

6. Ventilationseinheiten u. Flowboxen
 - Abzugschränke
 - Flow-Boxen (Laborbereich)

7. Innenlochsaugen, Schleif- u. Poliermaschinen
 - Für 2" u. 4" Durchmesser
 - Manuelle Sägen
 - Computergesteuerte Sägen

Alle Gebrauchtgeräte können von uns mit modernster Computersteuerung (GFV Prozeßautomatisierung) nachgerüstet werden.

Forder Sie unser kostenloses Informationsmaterial an!

IBS GmbH, Villenstr. 2, D-8082 Grafath 08144/7656, Fax 08144/7857
ANNULAR 55

Unsere Lösung für Ihre Schneidprobleme. Eine Innenlochsäge speziell für den Laborbereich und für die Kleinfertigung.

Features:
— besonders vibrationsarmer Rundlauf
— Höhenschlag des Sägeblattes 10 µm
— Schnittstärke 100 µm
— hohe Oberflächengüte
— dreh- und schwenkbare Kristallhalter ± 15°
— manuelle Kristallzustellung bis max 100 mm
 optional: Zustellung über Digitalanzeige
— hydr. gedämpfte Bewegung des Arbeitstisches
— integriertes Kühl-System
— Sichtfenster aus bruchsicherem Glas

Spezifikationen:
Max. Kristallänge 90 mm
Max. Schnitttiefe 55 mm
Man. Kristallzustellung 100 mm, Teilg. 0,02 mm
Option: Digitalanzeige Auflg. 2,5 oder 10 µm
Sägeblatt:
 Außendurchmesser 257 mm
 Innendurchmesser 101 mm
 Blattstärke variabel
 Blattgeschwindigkeit 0 — 5000 rpm
 Antriebssmotor mit dyn. 220 V / 0,75 kW
Bremssystem
Kühlmittelreservoir 60 ltr.
Höhe 1370 mm
Breite 890 mm
Tiefe 1300 mm
Gewicht 370 kg

Unser Lieferprogramm:

- Hochreine Materialien und Einkristalle auf Anfrage
- Einkristallziehanlagen nach Ihren Spezifikationen: Bridgman, Czochralski, Floatzone
- Komponenten für den Aufbau von Kristallziehanlagen Ziehköpfe, Tiegelrotations- und Hubeinrichtungen, Durchmesserkontrolle
- Laborsägen, Innenloch und peripher
- Poliermaschinen
- Hochtemperaturöfen
- Epitaxianlagen für verschiedene Prozesse
- MOVPE Systeme der MR Semonc
- Trockner für Prozeßgase - Scrubber für Arbeitsgase
- Plasmätztgeräte
- Aufdampf- u. Sputteranlagen, CVD-Anlagen
- Entwicklung von Prozessen u. Aufbau von Anlagen nach Kundenspezifikation
- Prozeßautomatisierung der GFV mbH
- Fertigungsanlagen für LWL
- LIDAR-Systeme zur Messung von Luftverschmutzung

IBS GmbH, Villenstr. 2, D-8082 Grafrath 08144/7656, Fax 08144/7857
DGK

Personalien

a) Veränderungen

Bergmann, Ralf, Dipl.-Physiker
School of Electr. Engineering
University of New South Wales
Kensington, NSW 2033
Australien
Tel.: Mitgliedsnummer: 568 S Edat.: 01/04/90
LPE von Si, Si auf Isolatoren, Charakterisierung dünner Schichten mit Elektronenmikroskopie und elektrischen Methoden, SOI, Solarzellen

Decker-Schultheiß, Gisela, Dipl.-Mineralogin
Heidelberger Zement
Abt. Forschung, Entwicklung
W-6906 Leimen
Tel.: 06224/703-495 Mitgliedsnummer: 455 M Edat.: 02/07/86

Jäger, Hand, Dr., Dipl.-Phys.
Chemetall GmbH
Reuterweg 14
W-6000 Frankfurt
Tel.: 069/159-3243 Mitgliedsnummer: 494 M Edat.: 26/11/87
Züchtungen von III-V- und III-VI-Halbleitern, Epitaxie von III-VI-Halbleitern, Charakterisierung

Kießling, Frank-Michael, Kristallograph
m. Heinrich Heine
F-75014 Paris Ch 116
Frankreich
Tel.: 0037/2/2803-334 Mitgliedsnummer: 584 M Edat.: 01/06/90
Kristallzüchtung aus der Schmelze und Schmelzlösungen II-VI, IV-VI, THM, Bridgman, Gasphasenzüchtung, Realstrukturcharakterisierung, Punktdefekte

Körber, Christoph, Priv.DoZ.Dr., Dipl.-Phys.
Helmholtz-Institut für Biomed. Technik der RWTH
Pauwelsstr. 30
W-5100 Aachen
Tel.: 0241/8088/20 Mitgliedsnummer: 426 M Edat.: 20/01/86
Erstarrungsvorgänge in wäßrigen Systemen, Gefrierkonservierung biologischer Zellen

Lenz, Annett, Studentin
Arno-Nitzsche-Str. 20
O-7030 Leipzig
Tel.: Mitgliedsnummer: 643 S Edat.: 01/09/91
Kristallchemie, Kristallographie, Strukturanalyse

Maas, Albrecht, Dr.
Forschungsverbund ARTEMIS
Universität Bonn
Römerstr. 164
W-5300 Bonn 1
Tel.: 0228/502-204 Mitgliedsnummer: 55 M Edat.: 14/04/70

Schettler, Rolf, Dr., Dipl.-Phys.
Zentrum f. Funktionswerkstoffe
gem. GmbH Göttingen/Clausthal
Windausweg 2
W-3400 Göttingen
Tel.: 0551/720-58 Mitgliedsnummer: 364 M Edat.: 01/11/84
Kristallzüchtigung von III-V, III-VI-Halbleitern und Oxidkristallen

Staudigl, Rudolf, Dr., Dipl.-Chem.
Wacker-Siltronic
P.O. Box 83180
Portland, OR 97283-0180
USA
Tel.: 503/7243-2020 Mitgliedsnummer: 360 M Edat.: 01/09/84
Metallorganische Chemie, Lichtleitfasern, III-V-Halbleiter

Schwer, Hansjörg, Dr., Dipl.-Min.
ETH Zürich
Hönggerberg
CH-8093 Zürich
Schweiz
Tel.: Mitgliedsnummer: 467 M Edat.: 01/01/87
Züchtung u. Charakterisierung von defekt-tetraedrischen Chalkogeniden Röntgenstrukturanalyse, Überstrukturen

Tomm, Yvonne, Dr., Kristallographin
Hahn-Meitner-Institut
Bereich S4 (Materiallabor)
Glienicker Str. 100
W-1000 Berlin 39
Tel.: 030/80092157 Mitgliedsnummer: 620 M Edat.: 01/01/91
Kristallzüchtung (Schmelze, CVT), Pyrit, Schichtgitterverbindingen, Chalkopyrite

Seif, Dr. Dipl.-Ing.
KWU BT 6
Hammerbacherstr. 12+14
8520 Erlangen
Tel.: 09131/183179, Fax: 09131/184705

b) Neumitglieder

Deppert, Knut, Dr., Kristallograph
Univers. Lund /FTF
S-22100 Lund
Schweden
Tel.: +4646/109586 Mitgliedsnummer: 651 M Edat.: 01/01/92
MOVPE und CBE von III-V-Halbleitern, Epitaxie allg.

Seifert, Werner, Dr., Dipl.-Chemiker
Dep. Solid State Physics
University of Lund
S-22100 Lund
Schweden
Tel.: +4646/107671 Mitgliedsnummer: 652 M Edat.: 01/01/92
Herstellung und Charakterisierung von Halbleitermaterialien, Gasphasenabscheidung, speziell MOVCVD, speziell III-V-Verbindungen, Abscheidung dünner Schichten, QW-Strukturen, Phasengrenzen

Becker, Uwe, Dr., Dipl.-Kristallograph
DLR
Inst. f. Technische Physik
Paffenwaldring 38
W-7000 Stuttgart 38
Tel.: 0711/6862-711 Mitgliedsnummer: 653 M Edat.: 01/01/92
Schmelzzüchtung und Charakterisierung einkristalliner optischer Fasern

Nagel, Nicolas, Dipl.-Physiker
MPI
Inst. f. Festkörperforschung
Heisenbergstr. 1
W-7000 Stuttgart 80
Tel.: 0711/6860-292 Mitgliedsnummer: 654 M Edat.: 01/01/92
Epitaxie, LPE, MBE, Herstellung von SOI-Strukturen

Trojahn, Ina, Dipl.-Kristallographin
Humboldt-Universität
Inst. f. Optik u. Spektroskopie
Chausseestr. 110
O-1040 Berlin
Tel.: Mitgliedsnummer: 655 M Edat.: 01/01/92
Metalle für Fixpunkttiegel zur Temperaturbestimmung

Schröder, Wolfgang, Dipl.-Physiker
Inst. f. Physikalische und Theoretische Chemie
Hans-Sommer-Str. 10
W-3300 Braunschweig
Tel.: 0531/391-5396 Mitgliedsnummer: 656 M Edat.: 01/01/92
Festkörperphysik, Spektroskopie, Lösungskristallisation mit Additiven

Klimakov, Alexander, Dr., Dipl.-Chemiker
Inst. f. Optik und Spektroskopie der Humboldt Universität
Invalidenstr. 100
O-1040 Berlin
Tel.: 030/22803-228 Mitgliedsnummer: 657 M
Edat.: 01/03/92
Züchtung und Thermodynamik von II-VI-Halbleitern, Dotierung, Diffusion

Hanke, Gottfried
Forschungszentrum Jülich
Leo-Brandt-Str.
W-5170 Jülich
Tel.: 02461/613-147 Mitgliedsnummer: 658 M Edat.: 01/02/92
Czochralski-Züchtung (Kupfer, Gold, Silber, Palladium, Nickel, Aluminium, Silizium, Germanium und Legierungen

Giess, Edward, A., Dr.
IBM Research Laboratory
Kitchawan Road
Yorktown Heights, NY 10598
USA
Tel.: 011914/3451006 Mitgliedsnummer: 659 M
Edat.: 01/01/92

LPE von Granat und HT-Supraleitern, Sintern von Glas-Keramik, Oxid-Phasendiagramme, Kupfer Elektrokristallisation, Flüssigkristalle, Polymere

Weinert, Berndt, Dr.-Metallurgen
Freiberger Elektronikwerkstoffe GmbH
Berthelsdorfer Str. 113
O-9200 Freiberg
Tel.: 037/762/85-52 Mitgliedsnummer: 660 M
Edat.: 01/02/92
Synthese und Einkristallzüchtung von III-V-Verbindungen

Linde, Matthias, Dipl.-Physiker
Universität/GH Paderborn
Warburger Str. 100
W-4790 Paderborn
Tel.: Mitgliedsnummer: 661 M Edat.: 01/02/92

Erler, Bettina, Studentin
Kristallographisches Institut der Universität
Hebelstr. 25
W-7800 Freiberg
Tel.: 0761/203-4287 Mitgliedsnummer: 662 S Edat.: 01/02/92
Kristallzüchtung und Charakterisierung

Hornung, Michael, Dipl.-Mineraloge
Kristallographisches Institut der Universität
Hebelstr. 25
W-7800 Freiberg
Tel.: 0761/203-4278 Mitgliedsnummer: 663 S Edat.: 01/02/92
Kristallzüchtung und Charakterisierung

Kühnel, Günter, Dr., Dipl.-Ing.
Bergakademie Freiberg
Fachbereich Experim. Physik
Silbermannstr. 1
O-9200 Freiberg
Tel.: 037/762/512541 Mitgliedsnummer: 664 M
Edat.: 01/03/92
Fax: 037/762/322391
III-V-Halbleiter gezüchtet nach Czochralski bzw. Bridgman, elektrische Charakterisierung, Defekte

Tagungkalender

1992

28. - 30. Mai
Wien / A
Dr. H. Behre, Varrentoppstr. 40–42, 6000 Frankfurt/Main

8. - 12. Juni
Cambridge / U.K.
6th International Conference on Metalorganic Vapor Phase Epitaxy (MOVPE-6)
Ms. G. McBride, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855, U.S.A.

9. - 12. Juni
Mainz / D
1. Jahrestagung der Deutschen Gesellschaft für Kristallographie
Prof. Dr. H. Böhm, Johannes-Gutenberg-Universität, Fachbereich Geowissenschaften, 6500 Mainz, Saarstr. 21

Cambridge (MA) / U.S.A.
34th Electronic Materials Conference
The Minerals, Metals & Materials Society, 420 Commonwealth Drive, Warrendale, PA 15086-9928, U.S.A.

9. - 10. Juli Marseille / F.
1st European Symposium on X-Ray Topography and High Resolution Diffraction
Dr. J. Gastaldi, CRMC2-CNRS, Campus de Luminy, Case 913, 13288 Marseille Cedex 9

19. - 23. Juli Southampton / U.K.
International Conference on Narrow Gap Semiconductors
Helen Palfrey and Mark Brummel, NGS Conference, Dept. of Aeronautics and Astronautics, Univ. of Southampton, SO9 5NH, U.K.

30. Juli - 1. August Enschede / N.
2nd European Powder Diffraction Conference (EPDIC-2)
Dr. T. Ryan, Philips Analytical, Lelyweg 1, 7602 AE Almelo, The Netherlands

2. - 7. August Enschede / N.
14th Europaeische Kristallographische Tagung (ECMG-14)
Dr. H.J. Bruins Slot, CAOS-CAMM Center, University of Nijmegen, Toernooiveld, 6525 Ed Nijmegen, The Netherlands

9. - 14. August Palm Springs (CA) / U.S.A.
8. International Summer School on Crystal Growth

16. - 22. August San Diego (CA) / U.S.A.
10. International Conference on Crystal Growth (ICCG-10)
C.D. Brandle, AT&T Bell Laboratories, 600 Mountain Ave., Rm.
7C-403 Murray Hill, NJ 07974, Fax: (908) 582-5917

24. - 28. August Schwäbisch Gmünd / D.
7th International Conference on Molecular Beam Epitaxy
(MBE-VII)
Dr. K. Ploog, MBE-VII Chairman, Max-Planck-Institut für Festkörperforschung, P.O. Box 80 06 65, D-7000 Stuttgart 80, Germany

7. - 11. September Glasgow / U.K.
2nd International Workshop on Crystal Growth of Organic Materials (CGOM2)
CGOM2 Conference Secretariat, Meeting Makers, 50 Richmond Street, Glasgow G1 1XP, Scotland

7. - 11. September Granada / E.
10th European Congress on Electron Microscopy (EUREM92)
Dr. A. Rios, Dept. of Cell Biology, Fac. of Sciences, University of Granada, 18071 Granada, Spanien

14. September Tübingen / D.
70. Jahrestagung der Deutschen Mineralogischen Gesellschaft
Prof. Dr. P. Metz, Universität Tübingen, Min.-Petrogr. Institut, Wilhelmsstr. 56, D-7400 Tübingen

17. - 18. September Jena / D.
RöTo Arbeitskreis, Prof. H. Klapper, Mineralog.-Petrolog. Institut der RFWU-Bonn, Poppelsdorfer Schloß, W-5300 Bonn 1

12. - 16. Oktober La Hague / NL.
12th International Vacuum Congress (IVC-12)
8th International Conference on Solid Surfaces (ICSS-8)
Congress Secretariat IVC-12/ICSS-8, von Namen & Westerlaken
Congress Organization Services, P.O. Box 1558, 6501 BN Nijmegen, Niederlande

30. November - 5. Dezember Boston (MA) / U.S.A.
Fall Meeting of the Materials Research Society (MRS)
Ms. M. Geil, 9800 McKnight Road, Pittsburgh, PA 15237, U.S.A.

1993

29. - 31. März 1993 Freiburg / D.
GV-Fachausschuß Kristallisation, Freiburg, Sachsen

April 1993 Berlin / D.
DGKK Jahrestagung in Berlin

International Symposium on Microgravity Science and Application Prof. W.R. Hu, Institute of Mechanics, Chinese Academy of Sciences 15 Zhong Guan Cun Road, Beijing 100080, China

1. - 6. August Baltimore (MD) / U.S.A.
9th American Conference on Crystal Growth
V. Fratello, AT&T Bell Labs, Murray Hill, NJ, U.S.A.

1. - 8. September Beijing / PRC.
16. Triennial General Assembly and International Congress of the International Union of Crystallography
Prof. M.-C. Shao, Institut of Physical Chemistry, Department of Chemistry, Peking University, Beijing 199871 China

21. - 25. September Leipzig / D.
15th European Crystallographic Meeting (ECM 15)
Prof. P. Paufier, Institut für Kristallographie, Mineralogie and Materialwissenschaft, Universität Leipzig, Schmarrnstr. 20, 0-7090 Leipzig

1994

Juli 1994 Freiburg / D.
ICVGE-8, Chairman K.W. Benz
DGKK-Stichwortliste

Materialien

<table>
<thead>
<tr>
<th>000</th>
<th>001</th>
<th>Elementekristalle</th>
</tr>
</thead>
<tbody>
<tr>
<td>002</td>
<td>003</td>
<td>Ionenkristalle</td>
</tr>
<tr>
<td>009</td>
<td></td>
<td>009 Andere</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>010</th>
<th>011</th>
<th>Silicium (Si)</th>
</tr>
</thead>
<tbody>
<tr>
<td>012</td>
<td>019</td>
<td>Germanium (Ge)</td>
</tr>
</tbody>
</table>

Verbindungshalbleiter

<table>
<thead>
<tr>
<th>020</th>
<th>021</th>
<th>IV-V</th>
</tr>
</thead>
<tbody>
<tr>
<td>022</td>
<td>023</td>
<td>III-V</td>
</tr>
<tr>
<td>024</td>
<td></td>
<td>ternäre</td>
</tr>
<tr>
<td>025</td>
<td></td>
<td>multifäre</td>
</tr>
<tr>
<td>029</td>
<td></td>
<td>029 Andere</td>
</tr>
</tbody>
</table>

Oxidkristalle

<table>
<thead>
<tr>
<th>030</th>
<th>031</th>
<th>HT-Supraleiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>032</td>
<td>039</td>
<td>Granate</td>
</tr>
<tr>
<td>039</td>
<td></td>
<td>039 Andere</td>
</tr>
</tbody>
</table>

Halogenide

<table>
<thead>
<tr>
<th>040</th>
<th>050</th>
<th>Chalkogenide</th>
</tr>
</thead>
<tbody>
<tr>
<td>060</td>
<td>070</td>
<td>Pnictide</td>
</tr>
<tr>
<td>099</td>
<td></td>
<td>099 Andere</td>
</tr>
</tbody>
</table>

Wachstumsformen

<table>
<thead>
<tr>
<th>100</th>
<th>101</th>
<th>Massivkristalle</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td>103</td>
<td>Dünne Schichten</td>
</tr>
<tr>
<td>103</td>
<td>109</td>
<td>Massenkrystalisation</td>
</tr>
<tr>
<td>109</td>
<td></td>
<td>109 Andere</td>
</tr>
</tbody>
</table>

Kristallisationsverfahren

<table>
<thead>
<tr>
<th>200</th>
<th>201</th>
<th>Czechralski</th>
</tr>
</thead>
<tbody>
<tr>
<td>202</td>
<td>203</td>
<td>LEC</td>
</tr>
<tr>
<td>204</td>
<td>205</td>
<td>Kyropol</td>
</tr>
<tr>
<td>206</td>
<td>207</td>
<td>Bridman</td>
</tr>
<tr>
<td>207</td>
<td>208</td>
<td>Float Zone</td>
</tr>
<tr>
<td>208</td>
<td>209</td>
<td>Schmelzzone</td>
</tr>
<tr>
<td>209</td>
<td>210</td>
<td>THEM</td>
</tr>
<tr>
<td>210</td>
<td>219</td>
<td>Verneuil</td>
</tr>
<tr>
<td>219</td>
<td></td>
<td>219 Andere</td>
</tr>
</tbody>
</table>

Gasphasenzüchtung

<table>
<thead>
<tr>
<th>220</th>
<th>221</th>
<th>CVD/CVT</th>
</tr>
</thead>
<tbody>
<tr>
<td>222</td>
<td>223</td>
<td>PVD</td>
</tr>
<tr>
<td>227</td>
<td>229</td>
<td>MOCVD</td>
</tr>
<tr>
<td>229</td>
<td></td>
<td>229 Andere</td>
</tr>
</tbody>
</table>

Lösungszüchtung

<table>
<thead>
<tr>
<th>230</th>
<th>231</th>
<th>wässrige Lösung</th>
</tr>
</thead>
<tbody>
<tr>
<td>232</td>
<td>233</td>
<td>Flux</td>
</tr>
<tr>
<td>234</td>
<td>235</td>
<td>Hydrotermale</td>
</tr>
<tr>
<td>235</td>
<td>239</td>
<td>Gelzüchtung</td>
</tr>
<tr>
<td>239</td>
<td></td>
<td>239 Andere</td>
</tr>
</tbody>
</table>

Epitaxie

<table>
<thead>
<tr>
<th>240</th>
<th>241</th>
<th>CVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>242</td>
<td>243</td>
<td>VPE</td>
</tr>
<tr>
<td>244</td>
<td>245</td>
<td>MBE</td>
</tr>
<tr>
<td>245</td>
<td>249</td>
<td>MOCVD</td>
</tr>
<tr>
<td>249</td>
<td></td>
<td>249 Andere</td>
</tr>
</tbody>
</table>

250 | 250 | Züchtung unter uG |

Elektrokristallisation

<table>
<thead>
<tr>
<th>260</th>
<th>270</th>
<th>Rekrystallisation/Sintern</th>
</tr>
</thead>
<tbody>
<tr>
<td>299</td>
<td></td>
<td>299 Andere</td>
</tr>
</tbody>
</table>

Apparatives

<table>
<thead>
<tr>
<th>300</th>
<th>301</th>
<th>Heizmethoden</th>
<th>Widerstandsheizung</th>
</tr>
</thead>
<tbody>
<tr>
<td>302</td>
<td>303</td>
<td>Hochfrequenzheizung</td>
<td>Laserheizung</td>
</tr>
<tr>
<td>304</td>
<td>305</td>
<td>Elektronenstrahlheizung</td>
<td>Optische Heizung</td>
</tr>
<tr>
<td>309</td>
<td></td>
<td>309 Andere</td>
<td></td>
</tr>
</tbody>
</table>

Mechanische Translation

<table>
<thead>
<tr>
<th>310</th>
<th>311</th>
<th>Linearbewegung</th>
</tr>
</thead>
<tbody>
<tr>
<td>312</td>
<td>319</td>
<td>Drehung</td>
</tr>
<tr>
<td>319</td>
<td></td>
<td>319 Andere</td>
</tr>
</tbody>
</table>

Anlagen

<table>
<thead>
<tr>
<th>320</th>
<th>321</th>
<th>Czechralskianlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>322</td>
<td>323</td>
<td>Bridgmananlagen</td>
</tr>
<tr>
<td>323</td>
<td>324</td>
<td>Epitaxianlagen</td>
</tr>
<tr>
<td>324</td>
<td>329</td>
<td>Zonenschmelzanlagen</td>
</tr>
<tr>
<td>329</td>
<td></td>
<td>329 Andere</td>
</tr>
</tbody>
</table>

Herstellung hochreiner Ausgangsmaterialien

<table>
<thead>
<tr>
<th>400</th>
<th></th>
<th>Charakterisierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>501</td>
<td>Mikrosondenmessungen</td>
</tr>
<tr>
<td>502</td>
<td>503</td>
<td>Chem. Analyse</td>
</tr>
<tr>
<td>503</td>
<td>504</td>
<td>Atomabsorption</td>
</tr>
<tr>
<td>504</td>
<td>505</td>
<td>Massenspektrometrie</td>
</tr>
<tr>
<td>505</td>
<td>509</td>
<td>thermische Analyse</td>
</tr>
<tr>
<td>509</td>
<td></td>
<td>509 Andere</td>
</tr>
</tbody>
</table>

Chemische Charakterisierung

<table>
<thead>
<tr>
<th>510</th>
<th>511</th>
<th>chem. Atzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>512</td>
<td>513</td>
<td>el. chem. Atzen</td>
</tr>
<tr>
<td>512</td>
<td>519</td>
<td>plasma Atzen</td>
</tr>
<tr>
<td>513</td>
<td>519</td>
<td>519 Andere</td>
</tr>
</tbody>
</table>

Elektrische Charakterisierung

<table>
<thead>
<tr>
<th>520</th>
<th>521</th>
<th>Hall</th>
</tr>
</thead>
<tbody>
<tr>
<td>522</td>
<td>523</td>
<td>Leitfähigkeit</td>
</tr>
<tr>
<td>524</td>
<td>525</td>
<td>Lebensdauer</td>
</tr>
<tr>
<td>525</td>
<td>529</td>
<td>Photovoltaik</td>
</tr>
<tr>
<td>529</td>
<td></td>
<td>529 Andere</td>
</tr>
</tbody>
</table>

Opt. Charakterisierung

<table>
<thead>
<tr>
<th>530</th>
<th>531</th>
<th>Spektrometrie</th>
</tr>
</thead>
<tbody>
<tr>
<td>532</td>
<td>533</td>
<td>Kristalloptik</td>
</tr>
<tr>
<td>533</td>
<td>534</td>
<td>Elektronenmikroskopie</td>
</tr>
<tr>
<td>534</td>
<td>539</td>
<td>Metallographische Methoden</td>
</tr>
<tr>
<td>539</td>
<td></td>
<td>539 Andere</td>
</tr>
</tbody>
</table>

Röntgen Methoden

<table>
<thead>
<tr>
<th>540</th>
<th>541</th>
<th>Röntgen-Topographie</th>
</tr>
</thead>
<tbody>
<tr>
<td>542</td>
<td>543</td>
<td>Röntgen-Spektrometrie</td>
</tr>
<tr>
<td>543</td>
<td>549</td>
<td>Röntgen-Fluoreszenz</td>
</tr>
<tr>
<td>549</td>
<td></td>
<td>Andere Röntgenmethoden</td>
</tr>
</tbody>
</table>

Sonstige Methoden

<table>
<thead>
<tr>
<th>550</th>
<th>551</th>
<th>Gammastrahlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>552</td>
<td>553</td>
<td>Radioaktive Strahlung</td>
</tr>
<tr>
<td>553</td>
<td>559</td>
<td>559 Andere</td>
</tr>
</tbody>
</table>

Oberflächenanalyse

<table>
<thead>
<tr>
<th>560</th>
<th>561</th>
<th>AUGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>562</td>
<td>563</td>
<td>LEED</td>
</tr>
<tr>
<td>563</td>
<td>564</td>
<td>LEELS</td>
</tr>
<tr>
<td>564</td>
<td>565</td>
<td>RHEED</td>
</tr>
<tr>
<td>565</td>
<td>566</td>
<td>SEM</td>
</tr>
<tr>
<td>566</td>
<td>567</td>
<td>TEM</td>
</tr>
<tr>
<td>567</td>
<td>568</td>
<td>UPS</td>
</tr>
<tr>
<td>568</td>
<td>569</td>
<td>XPS</td>
</tr>
<tr>
<td>569</td>
<td></td>
<td>569 Andere</td>
</tr>
</tbody>
</table>

Kristallperfektion

<table>
<thead>
<tr>
<th>700</th>
<th></th>
<th>700</th>
<th>Punktdefekte</th>
</tr>
</thead>
<tbody>
<tr>
<td>701</td>
<td></td>
<td>702</td>
<td>Gitterdefekte</td>
</tr>
<tr>
<td>702</td>
<td></td>
<td>703</td>
<td>Versetzungen</td>
</tr>
<tr>
<td>703</td>
<td></td>
<td>704</td>
<td>Stapelfehler</td>
</tr>
<tr>
<td>704</td>
<td></td>
<td>710</td>
<td>Kleinwinkelkorngrenzen</td>
</tr>
<tr>
<td>710</td>
<td></td>
<td>720</td>
<td>Einschlüsse</td>
</tr>
<tr>
<td>720</td>
<td></td>
<td>799</td>
<td>Andere</td>
</tr>
</tbody>
</table>

Theorie

<table>
<thead>
<tr>
<th>800</th>
<th>800</th>
<th>Kristallstruktur</th>
</tr>
</thead>
<tbody>
<tr>
<td>810</td>
<td></td>
<td>810</td>
</tr>
<tr>
<td>820</td>
<td>830</td>
<td>Grenzflächenphänomene</td>
</tr>
<tr>
<td>830</td>
<td>840</td>
<td>Oberflächenphänomene</td>
</tr>
<tr>
<td>840</td>
<td>850</td>
<td>Konvektion/Strömung</td>
</tr>
<tr>
<td>850</td>
<td></td>
<td>860</td>
</tr>
<tr>
<td>860</td>
<td></td>
<td>861</td>
</tr>
<tr>
<td>861</td>
<td>862</td>
<td>Keimbildung</td>
</tr>
<tr>
<td>862</td>
<td>863</td>
<td>Kristallwachstum</td>
</tr>
<tr>
<td>863</td>
<td></td>
<td>899</td>
</tr>
<tr>
<td>899</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
werden Sie Mitglied der DGKK!

Sie sind willkommen in einem Kreis von über 400 Fachkollegen, die einer Gesellschaft angehören, deren Zweck ist
— Forschung, Lehre und Technologie auf dem Gebiet von Kristallwachstum und Kristallzüchtung zu fördern,
— über entsprechende Arbeiten und Ergebnisse durch Tagungen und Mitteilungen zu informieren,
— wissenschaftliche Kontakte unter den Mitgliedern und die Beziehung zu anderen wissenschaftlichen Gesellschaften zu fördern, sowie
— die Interessen ihrer Mitglieder auf nationaler und internationaler Ebene im Sinne der Gemeinnützigkeit zu fördern.

DGKK-Schriftführer
Dr. H. Walcher
Fraunhofer-Gesellschaft
Inst. f. Angew. Festkörperphysik
Tullastraße 72
D-7800 Freiburg

Damit kann die Gesellschaft zu einer wesentlichen Unterstützung Ihrer beruflichen Aktivitäten beitragen. Zögern Sie daher nicht und senden Sie noch heute das ausgefüllte Anmeldeformular ab!
(Jahresbeitrag DM 30,—, für Studenten DM 15,—)

Antrag auf Mitgliedschaft / Änderung

Ich (Wir) beantrage(n) hiermit die Mitgliedschaft in der Deutschen Gesellschaft für Kristallwachstum und Kristallzüchtung e. V. (DGKK).

Art der Mitgliedschaft:

〇 ordentliches Mitglied
〇 studentisches Mitglied
〇 korporatives Mitglied

Gewünschter Beginn der Mitgliedschaft:

Dienstanschrift:

(Name) (Vorname) (Titel) (Beruf)

〇 *) (Firma, Institut, etc.)

(Straße, Haus-Nr.)

(PLZ, Ort) (Telefon) (FAX) ____________

Privatanschrift:

(Straße, Haus-Nr.)

〇 *) (PLZ, Ort) (Telefon)

Wissenschaftliche Interessen- und Erfahrungsgebiete (Stichworte):

Tätigkeit und Erfahrung mit maximal 10 Stichwortnummern charakterisieren (s. Liste).

__________________________ den ____________________________
(Unterschrift)

(*) bitte unbedingt ankreuzen, unter welcher Anschrift der Schriftwechsel geführt werden soll.
LINN High Therm

DAS UMFASENDE PROGRAMM

FuE-Rohröfen
Zum thermischen Modellieren
20 (Halb) Zonen einzeln regelbar
Temperaturbereich bis 1300° C
Quarz-, Graphit, Keramik-
und Metallrohre
mehrere Rohr-durchmessers
100 % Faserisolierung

Mini-Spiegelöfen
Kompakte Abmessungen
mit Schutzgasbetrieb
2 x 150 Watt Strahler
Temperaturbereich bis 2000° C
Kontrolleuchten für Wassermangel, Übertemperatur und Schutzgas
auch größere Sonderanlagen

Rohröfen
Um 90° klappbar, ermöglicht horizontalen und vertikalen Betrieb
Verfahrbar von 2 bis 200 mm/h
1 oder 3 beheizte Zonen
Temperaturbereich bis 1700° C (vertikal)
100 % Faserisolierung
verschiedene Größen

Hochtemperaturöfen
Vakuumdicht und schutzgasdicht
Kammsvolumen 4, 26 and 52 Liter
für oxidierende und reduzierende Atmosphären
Temperaturbereich 1300° C, 1600° C und 1800° C
für alle Erwärmungsprozesse
100 % Faserisolierung
große Auswahl an Temperaturregelungen
NEU: 2100° C unter oxidierender Atmosphäre

Hochfrequenz-Generatoren
in Halbleitertechnik
zum induktivem Löten von z.B. Metall-Keramik-Verbindungen
tiegelloses Schwebeschmelzen
HF-Ausgangsleistung 1,3 kW
sehr hoher Wirkungsgrad
äußerst kompakt B 470 x H 160 x T 400 mm
geringes Gewicht
bis 20 m absetzbarer HF-Generator als Option
weitere Generatoren bis 12 kW

LINN High Therm GmbH

Heinrich-Hertz-Platz 1 · Eschenfelden · D-8459 Hirschbach 1
Telefon (0 96 65) 17 21-25, Telex 63902 · Telefax (0 96 65) 17 20

Industrial Furnaces
Laboratory Furnaces
High-Frequency Heating
High-Temperature Technologies